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We propose a notion of a generator for multiparameter Feller semigroups and
summarise a calculus for these generators. Furthermore for multiparameter Feller
processes a martingale is associated with the generator.
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1. INTRODUCTION

The subject of this article is multiparameter stochastic processes with in-
dependent increments, in literature also referred to as additive multiparameter
processes. Among the vast research into two- or multiparameter processes the
closest to our merely analytic approach are the papers [5] by E.B. Dynkin who
solved a boundary value problem for the operator (−1)N∆1 · · ·∆N acting on
functions defined on G1× · · ·×GN , Gj ⊂ Rnj , where ∆j acts on the variables
of Gj only, see also [4]. Dynkin’s approach was taken up by Mazziotto [11] for
elliptic operators of second order and the associated diffusions.

For the predominantly probabilistic parts we mention [2] where the Lévy-
Khinchin theorem as well as the Lévy-Itô decomposition for Lévy processes
indexed by [0, 1]N are developed. For multivariate subordination, i.e., subor-
dination (in the sense of Bochner) for multiparameter Lévy processes we refer
the reader to Barndorff-Nielsen et al. [3]. Moreover we want to mention Khosh-
nevisan [10] as a standard reference.

In what follows we introduce an operator which is in some sense the in-
finitesimal generator A of multiparameter (Feller) semigroups (T(t1,...,tN ))(t1,...,
tN )∈RN

+
as it resembles the generator of a one-parameter semigroup in the as-

sociated (partial) differential equation. Moreover making use of this generator
we introduce a martingale for the canonical processes associated with a Feller
semigroup (T(t1,...,tN ))(t1,...,tN )∈RN

+
.
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It seems that our analytic point of view is new and relates partly to a spe-
cial type of multiparameter processes. In Section 2 we define multiparameter
convolution semigroups and, more generally, multiparameter semigroups of
operators. We define their generator and offer the necessary calculus. Finally,
Section 3 is devoted to a martingale for multiparameter processes, here we
refer to P. Imkeller [7] as a reliable source for two-parameter martingales. For
more background material on the analytic part of our theory we refer to [12]
as well as our joint paper [9] with A. Potrykus.

2. MULTIPARAMETER CONVOLUTION SEMIGROUPS
AND FELLER SEMIGROUPS

In this section we introduce N -parameter convolution semigroups of
probability measures and multiparameter Feller semigroups.

For an arbitrarily fixed natural number N ∈ N a family of probability
measures (µ(t1,...,tN ))t∈RN

+
indexed by non-negative real N -dimensional vectors,

which satisfies for all s, t ∈ RN
+ the conditions

1. µt(Rn) = 1;
2. µs ∗ µt = µs+t;
3. µt → µ0 vaguely for t→ 0 and µ0 = ε0

is called a multiparameter convolution semigroup of probability mea-
sures.

A first example of a two-parameter convolution semigroup (η(s,t))(s,t)∈R2
+

can be constructed as the product of two one-parameter convolution semi-
groups (µs)s≥0 and (νt)t≥0, by defining

η(s,t) := µs ⊗ νt for all (s, t) ∈ R2
+.

Then (η(s,t))(s,t)∈R2
+

is called the product semigroup of (µs)s≥0 and (νt)t≥0.

Multiparameter convolution semigroups feature the following decompo-
sition property:

Theorem 2.1. For an N -parameter convolution semigroup (µt)t∈RN
+

on
Rn there exist continuous negative definite functions ψ1, ψ2, . . . , ψN : Rn → C
such that

(1) µ̂t(ξ) = (2π)
n
2 e−t1ψ1(ξ)−t2ψ2(ξ)−···−tNψN (ξ)

holds for all ξ ∈ Rn and t � 0, i.e., tj ≥ 0 for j = 1, . . . , N.

Equation (1) exhibits that every N -parameter convolution semigroup can
be decomposed into the convolution of N one-parameter semigroups.
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The proof of Theorem 2.1 uses the continuity of the mapping t 7→ µt and
results about generalised Cauchy functional equations, see [1], p. 226. More
details are given in [12].

Now we consider N -parameter semigroups of strongly continuous opera-
tors on a real or complex Banach space (X, ‖ · ‖X).

Definition 2.2. A. An N -parameter family (Tt)t�0 , t ∈ RN
+ , of bounded

linear operators Tt : X → X is called an N-parameter semigroup of op-
erators, if T0 = id and for all s, t ∈ RN

+ we have

(2) Ts+t = Ts ◦ Tt.

B. We call (Tt)t�0 strongly continuous if for all x ∈ X we have

lim
t→0

‖Ttu− u‖X = 0.

C. The semigroup (Tt)t�0 is a contraction semigroup, if

‖Tt‖ ≤ 1

for all t � 0, i.e., each operator Tt is a contraction. Here ‖ · ‖ denotes the
operator norm ‖ · ‖X,X .

D. A strongly continuous contraction N -parameter semigroup (Tt)t�0

on (C∞(Rn), ‖ · ‖∞) which is positivity preserving is called an N-parameter
Feller semigroup.

Multiparameter semigroups feature the commuting property, which turns
out to be very useful when introducing the generator but also for the construc-
tion of associated stochastic processes. A family of operators (Tt)t∈RN

+
is said

to fulfill the commuting property, if for all s, t ∈ RN
+ we have

(3) [Tt, Ts] := Tt ◦ Ts − Ts ◦ Tt = 0.

This is a direct consequence of (2), since Tt ◦ Ts = Tt+s = Ts ◦ Tt, thus the
commuting property is fulfilled.

The following construction establishes the connection with convolution
semigroups.

Example 2.3. Any arbitraryN -parameter convolution semigroup (µt)t∈RN
+

gives rise to an N -parameter operator semigroup by

Ttu(x) :=
∫

Rn

u(x− y) µt(dy),(4)

for all t ∈ RN
+ and u ∈ C∞(Rn). Indeed (Tt)t�0 is a strongly continuous

contraction semigroup on Rn which is positivity preserving. Hence it is a
Feller semigroup.



30 Niels Jacob and Markus Schicks 4

Now, we want to introduce the generator for multiparameter Feller semi-
groups. For all j = 1, . . . , N, let A(j) denote the generator of the jth (one-
parameter) marginal semigroup (T (j)

tj
)tj≥0, i.e., T (j)

tj
= Ttj ·ej for all tj ∈ R+,

where ej is the jth canonical basis vector in RN . Then we define the operator
A called the infinitesimal generator of (Tt)t∈RN

+
by

(5) A = A(1) ◦ . . . ◦A(N).

With this newly defined generator A we associate the partial differential
equation

(6)
∂N

∂t1 · . . . · ∂tN
u(t, x) = Au(t, x)

which is solved by u(t, x)=Ttf(x) for all t∈RN
+ , x∈Rn, and f∈S(Rn). This is

a generalization of the differential equation associated to the generator in the
one-parameter case, see [8], and is one strong motivation for our notion of A.

For the generator we now develop a calculus, which is a powerful tool
when handling multiparameter operator semigroups and associated stochastic
processes. This calculus much resembles the calculus available for generators
of one-parameter semigroups, see [6] by Ethier and Kurtz or [8], and is the
second motivation for the introduction of the operator A as the generator of
multiparameter semigroups.

Theorem 2.4 (Calculus for the generator). Let A be the generator of an
N-parameter Feller semigroup (T(t1,...,tN ))(t1,...,tN )∈RN

+
.

A. If u ∈ D(A) then Ttu ∈ D(A), i.e., D(A) is invariant under Tt for
all t ∈ RN

+ .
B. Every marginal semigroup commutes with its own generator and the

generator of every other marginal semigroup, moreover the generators of the
marginal semigroup commute mutually, i.e., for all i, j ∈ 1, . . . , N we have

(7) [T (i), A(j)] = 0 and [A(i), A(j)] = 0.

C. For all u ∈ C∞(RN ) and arbitrary (t1, . . . , tN ) ∈ RN
+ the following

integration rules

A

∫ (t1,...,tN )

(0,...,0)
T(s1,...,sN ) u d(s1, . . . , sN ) =

∫ (t1,...,tN )

(0,...,0)
AT(s1,...,sN ) u d(s1, . . . , sN )

=
∑

sj∈{0,tj}, j∈{1,...,N}

(−1)N
N∏
j=1

(−1)sjT(s1,...,sN ) u.

We refer the reader to [12] for the proof of Theorem 2.4. Moreover in
[12] a detailed and comprehensive investigation of the properties of (A,D(A))
is given.
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3. A MARTINGALE ASSOCIATED
WITH MULTIPARAMETER FELLER SEMIGROUPS

We restrict ourselves now for simplicity to the 2-parameter case and we
prove that using A as well as A(1) and A(2) we can associate a martingale with
a 2-parameter Feller process extending the 1-parameter case in a natural way.

We define the filtration we will be working with. Let (F (j)
tj

)tj≥0 be the

natural filtration of the marginal processes (X(j)
tj

)tj≥0, then for all t∈RN
+ define

(8) Ft :=
N∨
j=1

F (j)
tj

:= σ

( N⋃
j=1

F (j)
tj

)
.

For the existence càdlàg-modification which we invoke in the following theorem
we refer the reader to Theorem 2.1 in [11].

Theorem 3.1. Let (T(t1,t2))(t1,t2)∈R2
+

be a Feller semigroup with gene-
rator (A,D(A)) and associated càdlàg-modification process

(
(X(t1,t2))(t1,t2)∈R2

+
,

(F(t1,t2))(t1,t2)∈R2
+

)
. Then for every u ∈ D(A) we have

Mu
(t1,t2) := u(X(t1,t2))− u(X(t1,0))− u(X(0,t2)) + u(X0,0)−(9)

−
∫ t1

0
A(1)

(
u(X(r1,t2))− u(X(r1,0))

)
dr1−

−
∫ t2

0
A(2)

(
u(X(t1,r2))− u(X(0,r2))

)
dr2 +

∫ t1

0

∫ t2

0
Au(X(r1,r2)) dr1dr2

is an {Ft}t∈R2
+
-martingale, i.e., the equality

E
[
Mu
t

∣∣Fs] = Mu
s

holds for all s � t, s, t ∈ R2
+.

Proof. For u∈D(A) we have Au∈C∞(Rn), and especially A(1)u,A(2)u∈
C∞(Rn) such that the integrals in (3.1) are well-defined. For 0 � s � t,
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s, t ∈ R2
+ we find

E
[
Mu

(t1,t2)−M
u
(s1,s2)

∣∣F(s1,s2)

]
=E

[
u(X(t1,t2))−u(X(t1,0))−u(X(0,t2))+u(X(0,0))

−
∫ t1

0
A(1)

(
u(X(r1,t2))− u(X(r1,0))

)
dr1 −

∫ t2

0
A(2)

(
u(X(t1,r2))− u(X(0,r2))

)
dr2

+
∫ t1

0

∫ t2

0
Au(X(r1,r2)) dr1dr2−u(X(s1,s2)) + u(X(s1,0)) + u(X(0,s2))−u(X(0,0))

+
∫ s1

0
A(1)

(
u(X(r1,t2))−u(X(r1,0))

)
dr1 +

∫ s2

0
A(2)

(
u(X(t1,r2))−u(X(0,r2))

)
dr2

−
∫ s1

0

∫ s2

0
Au(X(r1,r2)) dr1dr2

∣∣∣∣∣F(s1,s2)

]
.

By the Markov Property, we get

= T(t1−s1,t2−s2)u(X(s1,s2))− T
(1)
t1−s1u(X(s1,0))− T

(2)
t2−s2u(X(0,s2))

−
∫ s1

0
A(1)

(
T

(2)
t2−s2u(X(r1,s2))u(X(r1,s2))− u(X(r1,0))

)
dr1

−
∫ t1

s1

A(1)
(
T(r1−s1,t2−s2)u(X(s1,s2))− T

(1)
r1−s1u(X(s1,0))

)
dr1

−
∫ s2

0
A(2)

(
T

(1)
t1−s1u(X(s1,r2))− u(X(0,r2))

)
dr2

−
∫ t2

s2

A(2)
(
T(t1−s1,r2−s2)u(X(s1,r2))− T

(2)
t2−s2u(X(0,s2))

)
dr2

+
∫ t1

s1

∫ t2

s2

AT(r1−s1,r2−s2)u(X(s1,s2)) dr1dr2+
∫ t1

s1

∫ s2

0
AT

(1)
r1−s1u(X(s1,r2)) dr1dr2

+
∫ s1

0

∫ t2

s2

AT
(2)
r2−s2u(X(r1,s2)) dr1dr2 − u(X(s1,s2)) + u(X(s1,0)) + u(X(0,s2))

+
∫ s1

0
A(1)

(
u(X(r1,t2))−u(X(r1,0))

)
dr1+

∫ s2

0
A(2)

(
u(X(t1,r2))−u(X(0,r2))

)
dr2

= T(t1−s1,t2−s2)u(X(s1,s2))− T
(1)
t1−s1u(X(s1,0))− T

(2)
t2−s2u(X(0,s2))

−T (2)
t2−s2

∫ s1

0
A(1)u(X(r1,s2)) dr1 +

∫ s1

0
A(1)u(X(r1,0)) dr1

−T(t1−s1,t2−s2)u(X(s1,s2)) + T
(2)
t2−s2u(X(s1,s2)) + T

(1)
(t1−s1)u(X(s1,0))
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−u(X(s1,0))− T
(1)
t1−s1

∫ (2)

0
A(2)u(X(s1,r2)) dr2

+
∫ s2

0
A(2)u(X(0,r2)) dr2 − T(t1−s1,t2−s2)u(X(s1,s2)) + T

(1)
(t1−s1)u(X(s1,s2))

+T (2)
t2−s2u(X(0,s2)) + u(X(0,s2)) + T(t1−s1,t2−s2)u(X(s1,s2))

−T (1)
(t1−s1)u(X(s1,s2))− T

(2)
(t2,s2)u(X(s1,s2)) + u(X(s1,s2))

+T (1)
t1−s1

∫ s2

0
A(2)u(X(s1,r2)) dr2 −

∫ s2

0
A(2)u(X(s1,r2)) dr2

+T (2)
t2−s2

∫ s1

0
A(1)u(X(r1,s2)) dr1 −

∫ s1

0
A(1)u(X(r1,s2)) dr1 − u(X(s1,s2))

+u(X(s1,0)) + u(X(0,s2)) +
∫ s1

0
A(1)u(X(r1,s2)) dr1 −

∫ s1

0
A(1)u(X(r1,0)) dr1

+
∫ s2

0
A(2)u(X(s1,r2)) dr2 −

∫ s2

0
A(2)u(X(0,r2)) dr2 = 0. �

The extension of this martingale to stochastic processes depending on
three or more parameters does not make any problem.
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