MULTIPARAMETER MARKOV PROCESSES: GENERATORS AND ASSOCIATED MARTINGALES

NIELS JACOB and MARKUS SCHICKS

We propose a notion of a generator for multiparameter Feller semigroups and summarise a calculus for these generators. Furthermore for multiparameter Feller processes a martingale is associated with the generator.

AMS 2010 Subject Classification: 60G44, 60G60, 47D07, 47D99.

Key words: multiparameter Markov process, multiparameter martingal, multiparameter semigroups, random field.

1. INTRODUCTION

The subject of this article is multiparameter stochastic processes with independent increments, in literature also referred to as additive multiparameter processes. Among the vast research into two- or multiparameter processes the closest to our merely analytic approach are the papers [5] by E.B. Dynkin who solved a boundary value problem for the operator $(-1)^N \Delta_1 \cdots \Delta_N$ acting on functions defined on $G_1 \times \cdots \times G_N$, $G_j \subset \mathbb{R}^{n_j}$, where Δ_j acts on the variables of G_j only, see also [4]. Dynkin's approach was taken up by Mazziotto [11] for elliptic operators of second order and the associated diffusions.

For the predominantly probabilistic parts we mention [2] where the Lévy-Khinchin theorem as well as the Lévy-Itô decomposition for Lévy processes indexed by $[0,1]^N$ are developed. For multivariate subordination, i.e., subordination (in the sense of Bochner) for multiparameter Lévy processes we refer the reader to Barndorff-Nielsen et al. [3]. Moreover we want to mention Khoshnevisan [10] as a standard reference.

In what follows we introduce an operator which is in some sense the infinitesimal generator A of multiparameter (Feller) semigroups $(T_{(t_1,...,t_N)})_{(t_1,...,t_N)\in\mathbb{R}^N_+}$ as it resembles the generator of a one-parameter semigroup in the associated (partial) differential equation. Moreover making use of this generator we introduce a martingale for the canonical processes associated with a Feller semigroup $(T_{(t_1,...,t_N)})_{(t_1,...,t_N)\in\mathbb{R}^N_+}$.

REV. ROUMAINE MATH. PURES APPL., 55 (2010), 1, 27-34

It seems that our analytic point of view is new and relates partly to a special type of multiparameter processes. In Section 2 we define multiparameter convolution semigroups and, more generally, multiparameter semigroups of operators. We define their generator and offer the necessary calculus. Finally, Section 3 is devoted to a martingale for multiparameter processes, here we refer to P. Imkeller [7] as a reliable source for two-parameter martingales. For more background material on the analytic part of our theory we refer to [12] as well as our joint paper [9] with A. Potrykus.

2. MULTIPARAMETER CONVOLUTION SEMIGROUPS AND FELLER SEMIGROUPS

In this section we introduce N-parameter convolution semigroups of probability measures and multiparameter Feller semigroups.

For an arbitrarily fixed natural number $N \in \mathbb{N}$ a family of probability measures $(\mu_{(t_1,\ldots,t_N)})_{t\in\mathbb{R}^N_+}$ indexed by non-negative real N-dimensional vectors, which satisfies for all $s, t \in \mathbb{R}^N_+$ the conditions

1. $\mu_t(\mathbb{R}^n) = 1;$

2. $\mu_s * \mu_t = \mu_{s+t};$

3. $\mu_t \to \mu_0$ vaguely for $t \to 0$ and $\mu_0 = \varepsilon_0$

is called a multiparameter convolution semigroup of probability measures.

A first example of a two-parameter convolution semigroup $(\eta_{(s,t)})_{(s,t)\in\mathbb{R}^2_+}$ can be constructed as the product of two one-parameter convolution semigroups $(\mu_s)_{s>0}$ and $(\nu_t)_{t>0}$, by defining

$$\eta_{(s,t)} := \mu_s \otimes \nu_t \quad \text{for all } (s,t) \in \mathbb{R}^2_+.$$

Then $(\eta_{(s,t)})_{(s,t)\in\mathbb{R}^2_+}$ is called the **product semigroup** of $(\mu_s)_{s\geq 0}$ and $(\nu_t)_{t\geq 0}$.

Multiparameter convolution semigroups feature the following decomposition property:

THEOREM 2.1. For an N-parameter convolution semigroup $(\mu_t)_{t \in \mathbb{R}^N_+}$ on \mathbb{R}^n there exist continuous negative definite functions $\psi_1, \psi_2, \ldots, \psi_N : \mathbb{R}^n \to \mathbb{C}$ such that

(1)
$$\widehat{\mu}_t(\xi) = (2\pi)^{\frac{n}{2}} e^{-t_1\psi_1(\xi) - t_2\psi_2(\xi) - \dots - t_N\psi_N(\xi)}$$

holds for all $\xi \in \mathbb{R}^n$ and $t \succeq 0$, i.e., $t_j \ge 0$ for $j = 1, \ldots, N$.

Equation (1) exhibits that every N-parameter convolution semigroup can be decomposed into the convolution of N one-parameter semigroups.

The proof of Theorem 2.1 uses the continuity of the mapping $t \mapsto \mu_t$ and results about generalised Cauchy functional equations, see [1], p. 226. More details are given in [12].

Now we consider N-parameter semigroups of strongly continuous operators on a real or complex Banach space $(X, \|\cdot\|_X)$.

Definition 2.2. A. An N-parameter family $(T_t)_{t\geq 0}$, $t \in \mathbb{R}^N_+$, of bounded linear operators $T_t : X \to X$ is called an N-parameter semigroup of operators, if $T_0 = \text{id}$ and for all $s, t \in \mathbb{R}^N_+$ we have

(2)
$$T_{s+t} = T_s \circ T_t.$$

B. We call $(T_t)_{t \geq 0}$ strongly continuous if for all $x \in X$ we have

$$\lim_{t \to 0} \|T_t u - u\|_X = 0.$$

C. The semigroup $(T_t)_{t \succ 0}$ is a **contraction** semigroup, if

$$\|T_t\| \le 1$$

for all $t \succeq 0$, i.e., each operator T_t is a contraction. Here $\|\cdot\|$ denotes the operator norm $\|\cdot\|_{X,X}$.

D. A strongly continuous contraction N-parameter semigroup $(T_t)_{t \geq 0}$ on $(C_{\infty}(\mathbb{R}^n), \|\cdot\|_{\infty})$ which is positivity preserving is called an N-parameter Feller semigroup.

Multiparameter semigroups feature the commuting property, which turns out to be very useful when introducing the generator but also for the construction of associated stochastic processes. A family of operators $(T_t)_{t \in \mathbb{R}^N_+}$ is said

to fulfill the **commuting property**, if for all $s, t \in \mathbb{R}^N_+$ we have

(3)
$$[T_t, T_s] := T_t \circ T_s - T_s \circ T_t = 0.$$

This is a direct consequence of (2), since $T_t \circ T_s = T_{t+s} = T_s \circ T_t$, thus the commuting property is fulfilled.

The following construction establishes the connection with convolution semigroups.

Example 2.3. Any arbitrary N-parameter convolution semigroup $(\mu_t)_{t \in \mathbb{R}^N_+}$ gives rise to an N-parameter operator semigroup by

(4)
$$T_t u(x) := \int_{\mathbb{R}^n} u(x-y) \ \mu_t(\mathrm{d}y),$$

for all $t \in \mathbb{R}^N_+$ and $u \in C_{\infty}(\mathbb{R}^n)$. Indeed $(T_t)_{t \geq 0}$ is a strongly continuous contraction semigroup on \mathbb{R}^n which is positivity preserving. Hence it is a Feller semigroup.

Now, we want to introduce the generator for multiparameter Feller semigroups. For all j = 1, ..., N, let $A^{(j)}$ denote the generator of the *j*th (oneparameter) marginal semigroup $(T_{t_j}^{(j)})_{t_j \ge 0}$, i.e., $T_{t_j}^{(j)} = T_{t_j \cdot e_j}$ for all $t_j \in \mathbb{R}_+$, where e_j is the *j*th canonical basis vector in \mathbb{R}^N . Then we define the operator A called the **infinitesimal generator** of $(T_t)_{t \in \mathbb{R}^N}$ by

(5)
$$A = A^{(1)} \circ \ldots \circ A^{(N)}.$$

With this newly defined generator A we associate the partial differential equation

(6)
$$\frac{\partial^N}{\partial t_1 \cdot \ldots \cdot \partial t_N} u(t, x) = A u(t, x)$$

which is solved by $u(t,x) = T_t f(x)$ for all $t \in \mathbb{R}^N_+$, $x \in \mathbb{R}^n$, and $f \in \mathcal{S}(\mathbb{R}^n)$. This is a generalization of the differential equation associated to the generator in the one-parameter case, see [8], and is one strong motivation for our notion of A.

For the generator we now develop a calculus, which is a powerful tool when handling multiparameter operator semigroups and associated stochastic processes. This calculus much resembles the calculus available for generators of one-parameter semigroups, see [6] by Ethier and Kurtz or [8], and is the second motivation for the introduction of the operator A as the generator of multiparameter semigroups.

THEOREM 2.4 (Calculus for the generator). Let A be the generator of an *N*-parameter Feller semigroup $(T_{(t_1,...,t_N)})_{(t_1,...,t_N)\in\mathbb{R}^N_+}$. **A.** If $u \in D(A)$ then $T_t u \in D(A)$, i.e., D(A) is invariant under T_t for

all $t \in \mathbb{R}^{N}_{+}$.

B. Every marginal semigroup commutes with its own generator and the generator of every other marginal semigroup, moreover the generators of the marginal semigroup commute mutually, i.e., for all $i, j \in 1, ..., N$ we have

(7)
$$[T^{(i)}, A^{(j)}] = 0$$
 and $[A^{(i)}, A^{(j)}] = 0.$

C. For all $u \in C_{\infty}(\mathbb{R}^N)$ and arbitrary $(t_1, \ldots, t_N) \in \mathbb{R}^N_+$ the following integration rules

$$A \int_{(0,\dots,0)}^{(t_1,\dots,t_N)} T_{(s_1,\dots,s_N)} u \, \mathrm{d}(s_1,\dots,s_N) = \int_{(0,\dots,0)}^{(t_1,\dots,t_N)} A T_{(s_1,\dots,s_N)} u \, \mathrm{d}(s_1,\dots,s_N)$$
$$= \sum_{s_j \in \{0,t_j\}, j \in \{1,\dots,N\}} (-1)^N \prod_{j=1}^N (-1)^{s_j} T_{(s_1,\dots,s_N)} u.$$

We refer the reader to [12] for the proof of Theorem 2.4. Moreover in [12] a detailed and comprehensive investigation of the properties of (A, D(A))is given.

3. A MARTINGALE ASSOCIATED WITH MULTIPARAMETER FELLER SEMIGROUPS

We restrict ourselves now for simplicity to the 2-parameter case and we prove that using A as well as $A^{(1)}$ and $A^{(2)}$ we can associate a martingale with a 2-parameter Feller process extending the 1-parameter case in a natural way.

We define the filtration we will be working with. Let $(F_{t_j}^{(j)})_{t_j \ge 0}$ be the natural filtration of the marginal processes $(X_{t_j}^{(j)})_{t_j \ge 0}$, then for all $t \in \mathbb{R}^N_+$ define

(8)
$$\mathcal{F}_t := \bigvee_{j=1}^N \mathcal{F}_{t_j}^{(j)} := \sigma \bigg(\bigcup_{j=1}^N \mathcal{F}_{t_j}^{(j)} \bigg).$$

For the existence càdlàg-modification which we invoke in the following theorem we refer the reader to Theorem 2.1 in [11].

THEOREM 3.1. Let $(T_{(t_1,t_2)})_{(t_1,t_2)\in\mathbb{R}^2_+}$ be a Feller semigroup with generator (A, D(A)) and associated càdlàg-modification process $((X_{(t_1,t_2)})_{(t_1,t_2)\in\mathbb{R}^2_+})$. ($\mathcal{F}_{(t_1,t_2)})_{(t_1,t_2)\in\mathbb{R}^2_+}$). Then for every $u \in D(A)$ we have

(9)
$$M_{(t_1,t_2)}^u := u(X_{(t_1,t_2)}) - u(X_{(t_1,0)}) - u(X_{(0,t_2)}) + u(X_{0,0}) - \int_0^{t_1} A^{(1)} \left(u(X_{(r_1,t_2)}) - u(X_{(r_1,0)}) \right) dr_1 - \int_0^{t_2} A^{(2)} \left(u(X_{(t_1,r_2)}) - u(X_{(0,r_2)}) \right) dr_2 + \int_0^{t_1} \int_0^{t_2} Au(X_{(r_1,r_2)}) dr_1 dr_2$$

is an $\{\mathcal{F}_t\}_{t\in\mathbb{R}^2_+}$ -martingale, i.e., the equality

$$\mathbb{E}\big[M_t^u\big|\mathcal{F}_s\big] = M_s^u$$

holds for all $s \leq t, s, t \in \mathbb{R}^2_+$.

Proof. For $u \in D(A)$ we have $Au \in C_{\infty}(\mathbb{R}^n)$, and especially $A^{(1)}u, A^{(2)}u \in C_{\infty}(\mathbb{R}^n)$ such that the integrals in (3.1) are well-defined. For $0 \leq s \leq t$,

$s,t\in\mathbb{R}^2_+$ we find

$$\begin{split} \mathbb{E} \Big[M_{(t_1,t_2)}^u - M_{(s_1,s_2)}^u \Big| \mathcal{F}_{(s_1,s_2)} \Big] = \mathbb{E} \Bigg[u(X_{(t_1,t_2)}) - u(X_{(t_1,0)}) - u(X_{(0,t_2)}) + u(X_{(0,0)}) \\ - \int_0^{t_1} A^{(1)} \Big(u(X_{(r_1,t_2)}) - u(X_{(r_1,0)}) \Big) \, \mathrm{d}r_1 - \int_0^{t_2} A^{(2)} \Big(u(X_{(t_1,r_2)}) - u(X_{(0,r_2)}) \Big) \, \mathrm{d}r_2 \\ + \int_0^{t_1} \int_0^{t_2} Au(X_{(r_1,r_2)}) \, \mathrm{d}r_1 \mathrm{d}r_2 - u(X_{(s_1,s_2)}) + u(X_{(s_1,0)}) + u(X_{(0,s_2)}) - u(X_{(0,0)}) \\ + \int_0^{s_1} A^{(1)} \Big(u(X_{(r_1,t_2)}) - u(X_{(r_1,0)}) \Big) \, \mathrm{d}r_1 + \int_0^{s_2} A^{(2)} \Big(u(X_{(t_1,r_2)}) - u(X_{(0,r_2)}) \Big) \, \mathrm{d}r_2 \\ - \int_0^{s_1} \int_0^{s_2} Au(X_{(r_1,r_2)}) \, \mathrm{d}r_1 \mathrm{d}r_2 \Big| \mathcal{F}_{(s_1,s_2)} \Big]. \end{split}$$

By the Markov Property, we get

$$\begin{split} &= T_{(t_1-s_1,t_2-s_2)} u(X_{(s_1,s_2)}) - T_{t_1-s_1}^{(1)} u(X_{(s_1,0)}) - T_{t_2-s_2}^{(2)} u(X_{(0,s_2)}) \\ &\quad - \int_0^{s_1} A^{(1)} \big(T_{t_2-s_2}^{(2)} u(X_{(r_1,s_2)}) u(X_{(r_1,s_2)}) - u(X_{(r_1,0)}) \big) \, \mathrm{d}r_1 \\ &\quad - \int_{s_1}^{t_1} A^{(1)} \big(T_{(r_1-s_1,t_2-s_2)} u(X_{(s_1,s_2)}) - T_{r_1-s_1}^{(1)} u(X_{(s_1,0)}) \big) \, \mathrm{d}r_1 \\ &\quad - \int_0^{s_2} A^{(2)} \big(T_{t_1-s_1}^{(1)} u(X_{(s_1,r_2)}) - u(X_{(0,r_2)}) \big) \, \mathrm{d}r_2 \\ &\quad - \int_{s_2}^{t_2} A^{(2)} \big(T_{(t_1-s_1,r_2-s_2)} u(X_{(s_1,r_2)}) - T_{t_2-s_2}^{(2)} u(X_{(0,s_2)}) \big) \, \mathrm{d}r_1 \\ &\quad + \int_{s_1}^{s_1} \int_{s_2}^{t_2} AT_{(r_1-s_1,r_2-s_2)} u(X_{(s_1,s_2)}) \, \mathrm{d}r_1 \mathrm{d}r_2 + \int_{s_1}^{t_1} \int_0^{s_2} AT_{r_1-s_1}^{(1)} u(X_{(s_1,r_2)}) \, \mathrm{d}r_1 \mathrm{d}r_2 \\ &\quad + \int_0^{s_1} \int_{s_2}^{s_2} AT_{r_2-s_2}^{(2)} u(X_{(r_1,s_2)}) \, \mathrm{d}r_1 \mathrm{d}r_2 - u(X_{(s_1,s_2)}) + u(X_{(s_1,0)}) + u(X_{(0,s_2)}) \\ &\quad + \int_0^{s_1} A^{(1)} \big(u(X_{(r_1,t_2)}) - u(X_{(r_1,0)}) \big) \, \mathrm{d}r_1 \\ &\quad + \int_0^{s_1} A^{(1)} \big(u(X_{(r_1,t_2)}) - u(X_{(r_1,0)}) \big) \, \mathrm{d}r_1 + \int_0^{s_2} A^{(2)} \big(u(X_{(t_1,r_2)}) - u(X_{(0,r_2)}) \big) \, \mathrm{d}r_2 \\ &\quad = T_{(t_1-s_1,t_2-s_2)} u(X_{(s_1,s_2)}) - T_{t_1-s_1}^{(1)} u(X_{(s_1,0)}) - T_{t_2-s_2}^{(2)} u(X_{(0,s_2)}) \\ &\quad - T_{t_2-s_2}^{(2)} \int_0^{s_1} A^{(1)} u(X_{(r_1,s_2)}) \, \mathrm{d}r_1 + \int_0^{s_1} A^{(1)} u(X_{(r_1,0)}) \, \mathrm{d}r_1 \\ &\quad - T_{(t_1-s_1,t_2-s_2)} u(X_{(s_1,s_2)}) + T_{t_2-s_2}^{(2)} u(X_{(s_1,s_2)}) + T_{(t_1-s_1)}^{(1)} u(X_{(s_1,0)}) \end{split}$$

$$\begin{split} &-u(X_{(s_1,0)}) - T_{t_1-s_1}^{(1)} \int_0^{(2)} A^{(2)} u(X_{(s_1,r_2)}) \, \mathrm{d}r_2 \\ &+ \int_0^{s_2} A^{(2)} u(X_{(0,r_2)}) \, \mathrm{d}r_2 - T_{(t_1-s_1,t_2-s_2)} u(X_{(s_1,s_2)}) + T_{(t_1-s_1)}^{(1)} u(X_{(s_1,s_2)}) \\ &\quad + T_{t_2-s_2}^{(2)} u(X_{(0,s_2)}) + u(X_{(0,s_2)}) + T_{(t_1-s_1,t_2-s_2)} u(X_{(s_1,s_2)}) \\ &\quad - T_{(t_1-s_1)}^{(1)} u(X_{(s_1,s_2)}) - T_{(t_2,s_2)}^{(2)} u(X_{(s_1,s_2)}) + u(X_{(s_1,s_2)}) \\ &\quad + T_{t_1-s_1}^{(1)} \int_0^{s_2} A^{(2)} u(X_{(s_1,r_2)}) \, \mathrm{d}r_2 - \int_0^{s_2} A^{(2)} u(X_{(s_1,r_2)}) \, \mathrm{d}r_2 \\ &\quad + T_{t_2-s_2}^{(2)} \int_0^{s_1} A^{(1)} u(X_{(r_1,s_2)}) \, \mathrm{d}r_1 - \int_0^{s_1} A^{(1)} u(X_{(r_1,s_2)}) \, \mathrm{d}r_1 - u(X_{(s_1,s_2)}) \\ &\quad + u(X_{(s_1,0)}) + u(X_{(0,s_2)}) + \int_0^{s_1} A^{(1)} u(X_{(r_1,s_2)}) \, \mathrm{d}r_1 - \int_0^{s_1} A^{(1)} u(X_{(r_1,0)}) \, \mathrm{d}r_1 \\ &\quad + \int_0^{s_2} A^{(2)} u(X_{(s_1,r_2)}) \, \mathrm{d}r_2 - \int_0^{s_2} A^{(2)} u(X_{(0,r_2)}) \, \mathrm{d}r_2 = 0. \quad \Box \end{split}$$

The extension of this martingale to stochastic processes depending on three or more parameters does not make any problem.

REFERENCES

- J. Aczél, Lectures on Functional Equations and Their Applications. Academic Press, New York–London, 1966.
- [2] R.J. Adler, D. Monrad, R.H. Scissors and R. Wilson, Representations, decompositions and sample function continuity of random fields with independent increments. Stochastic Process. Appl. 15 (1983), 3–30.
- [3] O.E. Barndorff-Nielsen, J. Pedersen and K.-I. Sato, Multivariate subordination, selfdecomposability and stability. Adv. in Appl. Probab. 33 (2001), 160–187.
- [4] K. Doppel and N. Jacob, A non-hypoelliptic Dirichlet problem from stochastics, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 375–390.
- [5] E.B. Dynkin, Harmonic functions associated with several Markov processes. Adv. in Appl. Math. 2 (1981), 260–283.
- [6] S.N. Ethier and T.G. Kurtz, *Markov Processes*. Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1986.
- [7] P. Imkeller, Two-Parameter Martingales and Their Quadratic Variations. Lecture Notes in Mathematics. Vol. 1308, Springer, Berlin, 1988.
- [8] N. Jacob, Pseudo-Differential Operators and Markov Processes, vol. 1: Fourier Analysis and Semigroups. Imperial College Press, London, 2001.
- [9] N. Jacob, A. Potrykus and M. Schicks, Operators associated with multi-parameter families of probability measures. In: D. Bakry, L. Beznea, N. Boboc and M. Röckner (Eds.), Potential Theory and Stochastics in Albac. Aurel Cornea Memorial Volume, pp. 157– 172. Theta Ser. Adv. Math., Bucharest, 2009.
- [10] D. Khoshnevisan, Multiparameter Processes. Springer, New York, 2002.

- [11] G. Mazziotto, Two-parameter Hunt processes and potential theory. Ann. Probab. 16 (1988), 600-619.
- [12] M. Schicks Investigations on Families of Probability Measures Depending on Several Parameters. PhD Thesis, Swansea University, 2007.

Received 16 December 2008

34

Swansea University Department of Mathematics

 $Wales \ Institute \ of \ Mathematical$ $and \ Computational \ Sciences$ Singleton Park, Swansea SA2 8PP United Kingdom n.jacob@swansea.ac.uk

and

TU Braunschweig Institut für Mathematische Stochastik Pockelsstraße 14 38106 Braunschweig, Germany m.schicks@tu-braunschweig.de