CONTINUATION METHODS
AND DISJOINT EQUILIBRIA
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Continuation methods are efficient to trace branches of fixed point solutions in
the parameter space as long as these branches are connected. However, the com-
putation of isolated branches of fixed points is a crucial issue and require ad-hoc
techniques. We suggest a modification of the standard continuation methods to
determine these isolated branches more systematically. The so-called residue con-
tinuation method is a global homotopy starting from an arbitrary disjoint initial
guess. Explicit conditions ensuring the quadratic convergence of the underlying
Newton-Raphson process are derived and illustrated by several examples.
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1. INTRODUCTION

The models of nonlinear physical phenomena depend on parameters and,
in many cases, the transitions in the model behavior are found as values of
a particular parameter are changed. The dynamical systems theory studies
the common features of transitions in these nonlinear systems. This theory
basically comprises bifurcation theory and the theory of ergodic systems. One
of the important basic issues of the bifurcation theory is the determination of
fixed points (or steady states) of the system under investigation.

For example, in applications in fluid mechanics, the flows are described
by a set of partial differential non-linear equations, i.e., the Navier—Stokes
equations. The first step in the bifurcation analysis is the discretization of the
governing equations leading to a system of algebraic-differential equations of
the form

Ju

(1) a = A(unu’)a

where u € R" is the vector of the unknown quantities at the gridpoints, y € RP
is the vector of parameters, A : R™ x RP — R" is a nonlinear operator.
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The fixed point solutions are determined by A(u, 1) = 0 while branches
of steady states are usually computed versus a control parameter using the
so-called continuation methods [12, 19]. These continuation methods are very
efficient when the branches are connected in the parameter space, as techniques
exist to switch between the branches in the vicinity of the bifurcation points.
There is a rich literature on the application of these techniques in the fields of
fluid or structural dynamics, and mathematical analysis of the methodology.
See, e.g., [21, 4, 8, 17, 14, 1, 19, 15]. We refer to [15] for an up-to-date state
of art.

One of the basic continuation methods is the natural continuation method.
A branch of steady states of (1) is computed through infinitesimal increments
of a control parameter p € {1, o, ..., p1p}. Given a previously determined so-
lution (uy, f0), the solution (u, 10+ 9dp) is determined by the Newton-Raphson
method through

(2) D A" du* = —A*,  uf — v 4 ouF,

where 0y is a small increment with respect to ug, suf = uhtl — vk DLAP is
the Jacobian matrix of A* with respect to u at the k' estimate (u*, ug +dp).
At regular points one has

(3) rank(DuAk) =n.

Hence, the system arising after the Newton linearization can be solved. At
the saddle-node bifurcation points, however, the Jacobian is singular and the
natural continuation method cannot go around these bifurcation points.

To accomplish this, the pseudo-arclength continuation [12] was suggested.
In this method, an arclength parametrization of the solution branch of the
form (u(s),u(s)) is introduced, where s is the arclength parameter. Because
an additional degree of freedom is introduced, a scalar normalization of the
tangent along the branch is introduced, too. It has the form

(4) N (u(s), u(s)) = DyN.6u + D, N oy — ds = 0,

where D, N and DN are the derivatives of the operator N with respect to
and u, respectively.

Given a solution (u(sg),u(sp)), the solution (u(sg + ds), u(so + ds)) is
determined again by the Newton-Raphson method from the system

D,A" D,AF su” AF
(5) kT k k) =7 k)0
D,N* D,N op

<uk><_<uk—|—5uk>
:U’k Mk_i_(sﬂk )
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where DMA’“7 DMNk and D,N* are the derivatives of the operators at the
current estimate (uk, uk). In practice, both natural continuation and pseudo-
arclength continuation are implemented and a switch between the two schemes
is based on a value of the slope D,N [5, 6, 7, 10]. Usually, one starts the
continuation from a known trivial (or analytical) solution (uy, f10). In many
applications, however, there exist branches of steady state solutions discon-
nected from the branch containing a trivial starting solution. These branches
are the so-called isolated branches. Bifurcation theory in many cases may a
priori indicate that there are isolated (or disjoint) branches of solutions. A
typical example is the case of an imperfect pitchfork bifurcation, for example,
that occurring in the wind-driven ocean flows [3, 20].

There are basically three methods to compute these isolated branches.
But it is not guaranteed that one will find all branches by either of these
methods. Two of them are more or less trial and error while in the latter
method a more systematic approach is followed:

(i) Transient integration.
In this approach, a set of initial conditions is chosen and a transient
computation is started. If lucky, one of the initial conditions is in the
attraction basin of a steady state on the isolated branch. Once found,
one can continue tracing this branch using the continuation methods.

(ii) Isolated Newton-Raphson search.
One can also start a Newton-Raphson process uncoupled from the
pseudo-arclength continuation from several chosen starting points.
Since the convergence of the Newton-Raphson process is only qua-
dratic in the vicinity of the steady state, this method may not be very
efficient. But again, if very lucky, an isolated branch might be found.

(iii) Two-parameter continuation.
In several cases, a second parameter can be varied such that the tar-
geted branch connects to an already known branch. An important
example is where there are values of the second parameter for which
the dynamical system has a particular symmetry and pitchfork bi-
furcations are present. Once the connection is present, the isolated
branch can be computed by restoring the second parameter to its ori-
ginal value.

As is very important to determine isolated branches, there is a need
for more systematic methodology to find them. In this paper, we propose a
modification of the continuation methods which enables the determination of
the isolated branches in Section 2. Explicit conditions ensuring the quadratic
convergence of the Newton-Raphson process in the case of natural and pseudo-
arclength continuation are derived in Section 3. The capabilities and efficiency
of the method are illustrated in Section 4 by several examples.
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2. THE RESIDUE CONTINUATION METHOD

The Residue Continuation Method is based on the global homotopy idea
as pioneered by Keller [13]. Let u* be an initial guess for a fixed point of (1).
Keller considered the modified set of equations

A(u) — e Wt A(u*) =0,

where a(u) > 0 and 0 < t < co. As t — oo, the solution u(t), if it exists,
approaches a fixed point of (1). Keller showed that the choice of a(u) is
crucial and clarified the sharp conditions that this operator must satisfy on
a tubular neighborhood of the path for the existence of u(t). As the proof
is constructive, the choice of a particular a(u) for a given operator it clearly
indicated.

In the present paper, a systematic approach is suggested. Let (u*,pu*)
be an initial guess for an isolated steady state (u, o) of (1). The idea of the
residue continuation method is to solve the global homotopy

(6) H(U,IU,,O[)EA(H,M)—O[I':O,
K(u,p) =kqu+k,p=0,

where r = A(u*, u*) is the residue, « is the residue parameter. Furthermore,
the operators H : R” x R x [0,1] — R™ and £ : R” x R — R are introduced to
define the total system of equations. For a given residue r, assuming that k, #
0, it follows from the Implicit Function Theorem that (6) can be written as

(7) H (u(a)) = A(u(e), p(u(@))) —ar =0,
K(u(a)) = kyu(a) + Kk, p(u(ar)) = 0.

Let (o), be a real sequence such that o, € I = [a,b] C R. For
(u,_q, py—1) solution of the homotopy (7), denote

(8) ry—1=A(u, 1, p—1).

The Newton-Raphson method is used to solve the system of equations. For
the natural continuation, the scheme can be written as
(9) DyHE duf = —HE, ul — uf 4+ ouf

v

while for the pseudo-arclength continuation it becomes
(10) D HY Dy HE suf \ _ ([ HE
DN D, Nk sak )~ NE )

u o ut + fut
e ak + 50k )

AN
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Here, p1,, is such that ky.u, + k,p, = 0 and HE = A¥ — a,r,_;. Furthermore,
Dy MY and D,HF are the Jacobian with respect to u and the residue para-
meter, respectively, at the current estimate (u®,a®) of the solution (u,,a,)
of (7).

It follows from (7a) and (8) that

Ll

[
Hence the residue parameter «,, may be seen as the control parameter of the
norm of the residue. The residue increases (respectively decreases) as long as
|| > 1 (respectively |a| < 1) and o = 1 is a critical value corresponding to an
extremum of the norm of the residue.

(11) || =

3. CONVERGENCE AND ESTIMATE

In this section, a priori estimations of the convergence radius for the
Newton—Raphson method are derived for the residue continuation scheme for
both natural continuation (Subsection 3.1) and pseudo-arclength continuation
(Subsection 3.2).

3.1. NATURAL CONTINUATION

For any division (o), of I C R, u,, denotes the solution u(ay). Given
an initial guess of the solution of homotopy (7) (u’ = wu,_;, ¥ = p,1)
with @ = a1 and r = r,,_5, the Newton-Raphson scheme is written in the

equivalent form below. Forv=1,...,Nand k=0,...,p, — 1,

D AR —uf) = —AF e, b — ubt
with the corresponding value of the control parameter u, such as
(12) Fu.(u, —u,_1) + k#(ﬂu — f—1) = 0.

Assuming that Dy A is nonsingular for every u € R", the operator A :
R"™ — R" (hence also H : R" — R") is a homeomorphism. Therefore, for any
a in some compact range I, C I C R with extremities «,, and «,_1, equation
(7) admits a unique solution

(13) u(a) = A" (¢ ()r,_1),
(1—ay)a—(1—ay_1)a

¢ll(a) = ry—1.

Qpy_1 — Qy

As A™! is continously differentiable, it follows that o — u(a) is con-
tinuous and piecewise C! while o — DyA(u(a))™! is continuous on each
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I,,. Therefore, assuming that the sequence (||r,||), is bounded, there exists a
constant ¢ > 0 such that

(14) IDuA(u(a)) ™| <e¢, Vacl,.cICR

It follows that
1- v

(15  u(a) = DyA(u(a)™ (%) Cacl,
v—1 — y

Denote by C the limit curve of the Newton-Raphson process, defined as
(16) C={u(a) eR", a el CR}
As I is compact and convex and u is piecewise C'! and continuous, there exists
a compact convex set D C R" such that C C D.
PROPOSITION 3.1. For some constant ¢ > 0 we have
(17) YueD: |DyA(u)7|| <.
Proof. As DuyA is continuous, it is also bounded on D and we define
the constant x > 0 such that
(18) |IDuwAl|| <k, YueD.
Because DA is continuous on D, it is also uniformly continuous on D, hence
(19) Ve >0, In >0, Vu,u’ € D,
[u—u']| <n=|DuA(u) - DyAW)[| <e.
Furthermore, given any u,u’ € D and setting
f(t) = DyA (u+t(u' —u)),
as f is continuously differentiable, we get
DyA(u) — DyA(UW) = (1) — £(0) = /1 f'(t)dt =
1 0
= /0 DuyuA(u+ t(u —u))dt (u’ —u).

Then
Vu,u' € D, [DyA(u)—DyA(W)| =

1
/ DyuA(u+t(u' —u))dt (W' —u)|| < kllu—1d|
0

so that we may choose n = £.
In addition, for every u’ € D, we have
e DA _IDuA@)Y
T 1-[DyA(u®) 7 [DuA(u) —DyA(u?)|| T 1—¢|DyA(u®) |

[DuA(u)
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c

T S0 that we choose

Consequently, equation (17) holds with ¢ =
(20) € |0 !
€ —.
"2¢
This completes the proof. [

Following [11] (see [16]) with the sequence (u¥), we associate the quan-
tities Bkus Mhws Vi,ws tkjE ., according to recurrence introduced as follows. Let

/80,V7 770,117 ’YO,I/7 ta:,lj be deﬁned as

_ c
(21) IDWAE) ™ < oy = —— < +ox,
—ec
11— ay 0yy—1
(22) Tl [(DuA(w,)) | < nop < 400,
14
(23) Yo,v = To,v ﬁ(],l/ R,
1
24 tE = 14 /1-27,).
( ) 0,v K ﬁ(],l/ ( ’YOJ/)
For each v > 1, define the sequences B ., Mk, Ve, tfu by
Bk,
Ve = Bk Mhew Ky Brr1p = 1711,
— Yk

Vv Nk,v + 1
Mhaty = =XV gk (1 /T= 2y,) -
(L= w) P K B ( )

Letting k — oo for the residue Newton-Raphson scheme (12), we have

0 —_ 0 — —
(25) ||u1/ - u(aV)H = Huu - uV” < tO,V = tp,,_l,u—l

and, according to the definition of ug =u,_1,

2770,1/—1
2Pv—1 ’

(26) ) —u(en, 1) = [} —w ]l < 2np, 401 <
Kantorovich’s theorem then reads as follows.

COROLLARY 3.2. For each v, the sequence (uk);, generated by the scheme
(12) converges to the unique solution v, = u(ay,) of the system

Aw)—ayr,_1 =0, r,_1=A(u,—1)
in the open ball B(ug,tay) with
1

KPo,v

+ _
tO,I/ -

(1++v1—2v,),

where K, B, and yo, are defined in (18), (21) and (23), respectively.
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A sufficient condition for the convergence of (12) can now be stated as
follows.

PROPOSITION 3.3. A sufficient condition for the sequence (uf)y>o to
converge towards u(ay,) is that o, satisfies

11—l 1 (3-V5 _
27 0 — —t =A
(27) = || Izl < 2¢ M Toge tow v

where the constant ¢ has been defined in (14).

Proof. We look for a condition able to ensure (19) with n = £, u = u?

and u’ = u(w,), that is,
€
(28) )~ w(a) < =
Besides, this should be compatible with (25). In order to achieve (28), we first
notice that
(29) luy — u(ew)| < Jluy = u(aw—1)l| + ula-1) — ulay)].
Taking into account (26), we may choose p,_1 such that

201 _ €

< a )
-1 " 9
that is,
2}71/—1 > 4770,1/—1'%
e

which fixes p,_1 and also ug = uf”_ _11.

Recall that
(30) Vael,: A(u(a)) = —L ry_1,

where we set
(31) I, = [min (ay—1, @), max (a,—1, )]

Then, (15) yields

(1) — u(a)]| = | / " w(a)da| =

1_
‘ 041/| / D, A ))_1ru—ldaH§
|041/ 1 — O‘V‘
1 — o / .
- - D, A r,_1|lda| <
<l e ey <
1—«
<ol — al ey ]l = 2= e .

v |
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By (27), we may choose € such that

2101 1 — € 3—v56
32 : = < —< .
(32) o1 € v | .| 2K 4kc
After substitution into (29), this expression can be written as
[1—ay
(33) Il = u(ew)[| < 21— || <

| u\
that is, (28).

As for (25), the same argument with ¢, instead of £ shows that (27)
leads to

Iu? — ua)] < 22 < 45,

v
l/

which yields (25). Moreover, a sufficient condition for convergence is

1—cc

34 0 .
( ) < Moy < 2KcC

Indeed, from [16], a sufficient condition for Newton’s method to converge at
the given step v is that v, < % Arguing as in (17), we get

[DuA (u(ay) |

IDuA )| < —7 <
1 - [DyA(u)) — DuA(u(ow))| IDuA(alay)) !
c
< == :
(35) —1—c¢c ¢ Po.v
Then, the condition 7, < % becomes
_l—ec
(36) 0 < 770,11 2,8 VK; 20:‘43 I

which is (34). Notice that

1 — o _
noy = 7”(DuA(ug)) 1I'V||

with
I(DuA ) ', || < .

Then, on account of equation (35), a sufficient condition reads as

[1—ay 1—ec\?
el < :
‘ vl c

Comparing with (27), we get

1— 1 to, 1 [(1—cc\?
0< | ay‘Hrl/H < 7 min iaﬂa_ =
™ 2 ke’ ¢ K c
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€ 1 /1—ec\? s 3 1
— < = <:>E——+—2>0.
KC K c c c

This holds as soon as
3-V5

2¢

and

O<e<

thus completing the proof. [

3.2. PSEUDO-ARCLENGTH CONTINUATION

Remember that the pseudo-arclength continuation could also be applied
in the case of a non-regular Jacobian DyA, so that the Implicit Function
Theorem does not apply anymore.

For any given r and assuming that rank(DyA) = n — 1, let us introduce
the operator F : R"™! — R” by

o= [ Hu(s),als))
F(u(s),a(s);s) = < N(u(s), als): ) >

When the Implicit Function Theorem is applied for any given r, the global
homotopy (7) can be written as

(37) F(u(s),a(s)ir) =0, ky-u(s) + kuu(u(s)) = 0.
For some fixed s, > 0, consider Newton’s scheme (10) written in the
equivalent form below. Forv=1,...,Nand k=0,...,p, — 1,
D AR —ub) — (o —oF)r, ) = —AF £ abr, g,

DuN; (u ! — ug) + DaNj(ay ™ — o) = -,
ko k k k
(uy, app) — (uy ™ ™).
For any 1 < v < N, the corresponding value of the control parameter p, is
such that
(38) ky . (uu - uu—l) + kﬁ(#u - Nu—l) =0,

where the initialization point (u%,a%) = (u,_1,,_1) is taken to be solution
of (7) with s=s,_1 andr =r,_».
In the sequel, we assume that the matrix

e = (o) o )

is nonsingular for every (u,a) € R™ x R and that there is a constant ¢ > 0
such that
|1B Y (u,a)|| <¢, V(u,a) € R" xR.



11 Continuation methods and disjoint equilibria 19

Since, by construction, F(-,-;s,r) is a homeomorphism R” x R — R" x R,
(37) admits a unique solution

()= ()

for every s > 0. As F ! is continuously differentiable, s — F(-,-;s)"' is of
class C! as well as s — (u(s),a(s)). In particular, there exists a constant
¢ > 0 such that

(39) IB(u(s),a(s))7 ! < e, VseR,

and we have

) (20) =B a) ! (_p patey.age) )

Consider the sequence (yl]f)mk = (uf, al’f)mk defined for a division

-1

so <81 <---<8n, hy,=s8,—5,_1>0,
of I C R, by the scheme below. For v =1,... N
ylo/ =Yv-1,
k_ k
an  ystevb- Bl (AT ) k=0,
Ny
yo =y, r,=A().
Defining the set
C={(u(s),a(s)) e R" xR, s € [sg, sn|},

there exists a compact convex set D C R" x R such that C C D. As DyB is
continuous, it is also bounded on D and we have

IDyB(y)ll <, Vy=(u,a)eD

for some constant x > 0. As B is continuous on D, it is also uniformly
continuous on D, i.e.,

(42) Ve>0,3n>0,Vy,y' €D, |y-yl<n=|By)-Blyl<e

Furthermore,

IB(y) — B(y')|l =
1
= H/O DyB(y +t(y' —y))dt (Y’—Y)H <&ly-¥'ll. Vy,y' €D,
so that we may choose n = £. Remark that
0y—1 0y—1
) 150) 1B _ B e

-1
I T B0 B —BGOT = 1= 7] ~ e

so that we choose ¢ € [0, & ].
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With each sequence (yllf) r We may associate quantities By ., Mk.v» Ve,ws by

(44) IDyB(y)ll <, VyeD,

(45) IB(yp) ™M < ¢ = o, < +oo,

(46) 50 (LoD 0) | < < o0
(47) Yoo = Mook < %,

(48) = - ;}W (14 yT=27,).

(49) Vi = Brepev ks

(50) R

(51) it = 3

where we took into account that

N =DuA%5ul+D, A% = DAY (u) — ul’ )+ DAY (el — ol 1) =0,
where
(52) yott = vy = Bly)) '\ F(yyi s o)

Now, the arguments from the previous section with Dy A, u, « replaced by B,
y, s, respectively, yield the result below.

COROLLARY 3.4. For each v, the sequence (y&);. generated by the scheme
(41) converges to the unique solutiony, =y(s,) = (u(sy),a(sy)) of the system

A(uu) —opry_1 =0, K(uu) =0, N(Yu; 51/) =0, r,1= A(uu—l)
in the open ball B(ylo,,taiy), where
1

TR (1+/1—27,)
N

and K, B, and o, are defined in (44), (45) and (47), respectively.

+
tO,u -
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PROPOSITION 3.5. A sufficient condition for the sequence (yl]f)kzo to
converge to y(s,) is that

1 1
53 0<hy<——min | —,¢7
9 < i (50
and 0
1 -« 1
<—=A
0< || x| 2Kc2 v

where the constant ¢ has been defined in (39).
Proof. The proof follows the same lines as that of Proposition 3.3. Con-
dition (42) must hold with n = £,y = y2, y' =y(a,), that is,
€

lyy = y(ew) < —
In addition, we have the analogue of (19). First, notice that
(54) lyy =y (su)ll < Iy = y(su-1)ll + [y (sv-1) = ¥ (s0)]-
The analogue of (26) holds, namely,

2770,1/—1
IPv—1 ’

lyy = y(so-ll = ly2" 7" = yo-1ll < 20p, 101 <
Therefore, we may choose p,,_1 such that
210,01 < £

2Pv—1 2/@’

that is,
oPr-1 4770,1/—1'%’

€
which fixes p,_1 and also y = y2“7'. Moreover, equation (40) yields

Iys,2) =yl = | | y/(5)ds]| =

(55) = [ Bvten ™ 0. -DNy(e) s <

< / 1B(y() || IDaNlds < e[ DN

Then (53) implies that we may choose € such that

2770,1/—1
227:/—1

€ 1
= ¢|DN||hy < — < —
DN, < 5% Inc’
in accordance with (20), that is,

5
0<h, < -—=-
2kc|| DN
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After substitution in (54), we get
€
(56) lyy = y(s0)ll < elDN b, < —,

which is (42).
The analogue of (25) reads as
(57) lyy =yl = llyy = voll <tg, =t 1.

Then the same argument, with #;,, instead of =, yields

0<hy, < ! i (6 to. )
——————min | — .
Y7 2¢|| DN w0V
Moreover, arguing as in the previous section we find that the requirement (34)
still holds, that is,

]_ _
(58) 0< M0,v < ¢

Recall that

2kc

) (O o)

To,v >

v

so that 7y, may be chosen as

s (L 0)

v

This implies

< -
oy = 8ke(l — ec)
while (20) yields 1 — ec > 1. Thus,

7’]0’1, 1 < 1
1—ec ~ 8ke(l —ec)?2 = 2kc?’

which is (58). O

4. NUMERICAL EXPERIMENTS

In this section, we illustrate the residue continuation method along four
examples. The first example addresses the problem of finding a fixed point
solution of a scalar equation (i.e. u € R and u € R) starting from an arbitrary
initial guess. In the second and the third examples a scalar equation is again
used and is shown how the method is able to reach an isolated solution; the
convergence properties of the method are also shown. These three examples
illustrate the key ideas and convergence properties of the residue continuation
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method. The last example is an application to a multidimensional set of
equations encountered in the analysis of the stability of mechanical structures
[22, 9].

4.1. STARTING FROM A REMOTE ESTIMATE

This subsection illustrates how to find a fixed point solution on a branch
using the residue continuation method, starting from a disjoint guess. Consider
the scalar equation

(59) A, p)=(w—-123+p+1

with A : R x R — R. The branch of steady states is carried out as follows.
Consider (u* =55, u* = —10) as the initial guess marked with a square in
Figure 1(a). It is a far too coarse guess for the classical continuation methods.
Nevertherless, using the residue continuation method with k, =0, k, =1, a
path is found (denoted by pt#1 in Figure 1(a)) from this remote estimate to
the corresponding solution on the branch marked with a dot. Starting from
this point, the branch of steady states can be determined using the classical
pseudo-arclength continuation method (solid and dash-dotted lines). From
the initial remote estimate and choosing other directions, other paths can be
also taken, and an example where k, = 0.1, k, = 1 is shown in Figure 1(b).

The example illustrates that for some given discretized operator, one
can start from a remote initial guess and find, using systematically the residue
continuation method, a fixed point solution of the operator. One could have
alternatively started the Newton-Raphson scheme from the initial estimate,
but this is not guaranteed to converge. The method can thus be applied for
problems where no trivial or analytical solution is known, and determine a first
fixed point solution. Also, in case one does not want to compute solutions from
the trivial state because of computational constraints, the method here can
provide an efficient initial nontrivial solution.

4.2. LOCATION OF AN ISOLATED BRANCH

Suppose a dynamical system has more than a single branch of fixed
point solutions and that only one of these branches has been computed (for
example, by starting from a trivial solution). In this example, we illustrate how
the residue continuation method can be used to compute the other branches.
Again, we take a simple scalar equation, in this case

(60)  A(u,p) = ((u—1)*+p+1)((u—10)* - g —5) ((u—7)> + p + 10),
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where A : R x R — R. As shown in Figure 2(a), there are three branches of
steady states labelled #1, #2 and #3 corresponding to the three factors of
the right hand side of equation (60). The branches #1 and #3 are connected
through a transcritical bifurcation while the branch #2 is isolated. Our target
is to compute a point on the branch #2 starting from a point of the branch
#1 as a remote estimate.

Using the procedure in Subsection 4.1, we first reach a point on branch
#3 through the residue continuation path pt#1 (Figure 2(a)). From this fixed
point, the branch #3 is computed using standard pseudo-arclength continu-
ation rounding the saddle-node bifurcation at v = 7, p = —10. In a typi-
cal application, one would detect the transcritical bifurcation at (u = 4.75,
u* = —15) and then use a branch switching method to calculate the branch
#1. Alternatively, one can also take the point (u = 5.56, pu* = —12) on the
branch #3 as a remote estimate of a point on the branch #1 and determine
the latter using the procedure as in Subsection 4.1. The dotted line pt#2
(Figure 2(a)) represents the corresponding residue continuation method path
to the solution on the branch #1 (u = 4.32, u = —12). Therefore, the residue
continuation scheme can also be used to switch branches. From the endpoint
of pt#2, the branch #1 can again be computed with pseudo-arclength con-
tinuation. Subsequently, starting from the point (u = 2.74, u = —4) on the
branch #1, the isolated branch #2 is reached through the residue continuation
path pt #3 (Figure 2(a)).

Using the residue continuation method, no specific treatment is necessary
for the switch and no specific correctors are needed as is the case of predictor
methods based on interpolation [1, 19, 18, 2]. Furthermore, only the operator
itself and its Jacobian are needed in contrast to the predictor method via the
tangent [12], where higher order derivatives are needed.

4.3. CONVERGENCE AND ESTIMATES

In the case of a scalar operator A : R x R — R, we now consider the
sufficient convergence conditions for the residue continuation methods (9) and
(10) as in Propositions 3.3 and 3.5. The local evolution of the norm of the
residue versus the residue parameter is constrained by a curve similar to, say,
the function

Qay

I

(61) PRV S RY, a,e |2

(and plotted as a solid line in Figure 2(c)). This curve partitions the domain
{a € R\{1}, r > 0} in two zones. The Newton-Raphson method quadratically
converges only below the curve.
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For the example in Section 4.2, consider the residue path pt#3 of Figure
2(a). Along this path, the norm of the residue versus the residue parameter
for the three values of the arclength step ds is plotted in Figure 2(b). For
ds = 0.01, the norm of the residue versus «, together with the zone of quadratic
convergence, is plotted in Figure 2(c). The starting point is marked by a
square (o = 1). As already mentioned in Section 2, the residue first increases
(v > 1) up to the maximum for which a = 1. As a matter of fact, denoting
r(a) = A(u(a)), it follows from the identity

d d
—|rf® = 2l e

that every non zero extremum of the norm of the residue is attained for o € I,
as defined in (31) when

d
—||r| = 0.
2l

That is, taking into account equation (30)—(31), when either |[r,_1]] = 0 or
a,, = 1. Therefore, as long as r,, does not vanish, the extrema of the residue
are located along the line {o = 1} of the graph of ||r|| as a function of «a.
Moreover, if 0 < a,—1 < ap, =1 < 41 then

ol = lfrv—all < llevall and e, —af| > [ruf] = fry—ll;
that is, if «y, crosses o, = 1 from below, then ||r,|| = |[r,—1]| is a local mini-
mum. The same arguments show that, conversely, if a, crosses o, = 1 from
above, then ||r,|| = ||r,—1] is a local maximum.

In general, the sequence (e, ), is not monotonous, while ||r, || is monoto-
nous as long as |, | remains in either intervals ]0, 1] or |1, +oo[. For example,
if oy, > 11is, at least locally, a maximum value of the parameter «,, then ||r, ||
still increases beyond ||r,, || for v > 1, but at a lower rate than for v < . In-
deed, in the example above, the residue ||r, || (respectively a,,) increases from
the zero value (from «,, = 1) until o, yields a local maximum ayax > 1 from
which the residue still increases but at a lower rate. One observes this fold
point in both Figures 2(b) and 3(b). Then, o, crosses a,, = 1 from above
which causes the residue to decrease until a;,, = 0. This leads to r, = 0.
Eventually, the residue decreases from the maximum down to zero. The cor-
responding end points of the path #3 are marked with a circle for ds = 1073,
ds = 1072 and ds = 5- 107° from right to left on the a- axis on Figure 2(b).
In Figures 3(a) and 3(b) are plotted the corresponding curves of the residue
as a function of u, and u versus a.
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4.4. SHALLOW TRUSS ARCHES

As an illustration of the residue continuation method in a multidimen-
sional dynamical system, we analyze the dynamics of shallow truss arches [9],
as depicted in Figure 4(a). In the (z,y) plane, this two rod system is charac-
terized by the Young moduli E; and the areas A; of the sections of the rods,
i = 1,2. Denote by E and A the nominal values of the perfect system. Let
(x1 =—1, y1 =1) and (x2 = 1, yo = 1) be the coordinates of stands 1 and 2.
Define the lengths of the rods at the equilibrium before loading and for a given
vertical load f as

1/2
L= ((w3 — 2:)” + (y3 — %:)?) /
- 1/2
= (@ =2+ v —u))",
where (z3,ys3) and (z,y) are the coordinates of stand 3 of the two rod system
without or with a given vertical load |f| > 0.
The equilibrium of the arches is governed by the system of equations

i=1
The vector of the unknowns is u = (z,y) and the vector of the parameters is
E1A EjAy
T1,Y1,22,Y2,T3,Y3, EA EA 7f
For the perfect case, set
E1Ar EbA

=1.

T = 1ay1_1ax2_1ay2_1ax3_0ay3_0a EA_EA
In this case, Figure 4(b) depicts y versus the load f. The solid and the dotted
lines denote the stable and unstable parts of the branch, respectively. There
are two saddle-node bifurcations which lead to hysteresis behavior as a function
of the load f. Starting from the point a on the branch for which f = 0, a
vertical load (f > 0) yields eventually the saddle-node bifurcation at point b.
For a slightly larger load, the system jumps down to the stable fixed point
c. Then, if the load is decreased from point ¢, the system eventually reaches
the saddle-node bifurcation at point d. For slightly smaller values of f, the
system jumps up to the stable fixed point e. This behavior is the well known
snap-through phenomenon.
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For x3 = 0.1, an imperfect branch #2 (Figure 4(c)) appears. Starting
from a point on the perfect branch x = 0,y = 0 for f = 0 (denoted by #1
in Figure 4(c)), the residue path towards the imperfect branch #2 is again
computed using the residue continuation method. Thereafter, the imperfect
branch #2 is computed using classical pseudo-arclength continuation method.
In the imperfect case (x3 = 0.1) hysteresis occurs both for z and y (Figure 5).
In this example, the residue continuation method is an efficient tool to compute
the isolated branches, hence to provide insight into the imperfect snap-through
of the shallow truss arches system.

5. SUMMARY AND DISCUSSION

Many physical systems exhibit disjointed equilibria. In this paper, the so-
called residue (homotopy) continuation method is introduced. The method is
based on the Global Homotopy (6) and can start from a remote initial estimate.
We have derived explicit conditions ensuring the quadratic convergence of
the Newton-Raphson algorithm for the residue continuation method in both
natural and pseudo-arclength continuation.

Along a few examples, the capabilities of the residue continuation method
are illustrated. Isolated branches are indeed determined in quite general cases.
As shown in Subsection 4.2, the method may even be used as a branch switch-
ing algorithm. The branch switching near a transcritical bifurcation, which is
classically a delicate issue, enters the scope of the method.

As an illustration of the residue continuation method in a more practical
(although still low dimensional) system, we considered in Subsection 4.4 the
imperfect snap-through in a shallow two truss arch system [9]. In this example,
we show that an isolated branch can be reached. The residue continuation
method is likely to be a good candidate for the treatment of the imperfect
bifurcations.

With respect to earlier methods suggested to determine isolated branches,
a complete picture of the fixed point set is attainable with the residue con-
tinuation method without referring to any preliminary hierarchy of the singu-
larities. Any singular points on the residue continuation path can be handled
by means of a local finite step of the control or residue parameter. Finally,
no higher order derivatives (only the Jacobian) are necessary for the residue
continuation scheme in contrast to the predictor method via the tangent [12].
The structure of fixed point solutions is a delicate and important issue in the
natural systems, in particular those that exhibit imperfections. The residue
continuation is reasonably efficient, robust and easy to implement as only the
operator and its Jacobian are needed.
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Fig. 1. Plot of the residue continuation path pt#1 (dotted line) from a
coarse initial guess (marked with a square) of the operator (59).
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Fig. 2. For the operator (60), (a) continuation paths, (b) the norm of the
residue versus « along pt#3 with ds = 1072, and (c) the sketch of the
evolution of the norm of the residue (divided by 1500 for convenience) for
pt#3 together with the function (61) as a solid line.
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Fig. 4. (a) A sketch of the shallow truss arches system. (b) Bifurcation di-
agram for the perfect shallow truss arches system. (c) Bifurcation diagram
of the imperfect (x3 = 0.1) shallow truss arches system.
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Fig. 5. Bifurcation diagram for the shallow truss arches in the imperfect
case. In (a) and (b), y and = are plotted versus the load f, respectively,
while in (c) the parametric curve (y(f),z(f)) is shown. Solid and dotted
linestyles denote the stable and unstable parts of the branches, respectively.
In the imperfect case (x3 = 0.1) hysteresis occurs for both y and x as the
load f is varied.
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