NUMERICAL METHOD FOR A SINGULARLY PERTURBED DIFFERENTIAL SYSTEM

I.G. AMIRALIYEVA

Communicated by the former editorial board

A second-order accurate difference scheme is developed to solve Boussinesq system. For the time integration, a Crank-Nicolson type scheme is used. The error estimates for the numerical solution are obtained. Numerical results are also presented.

AMS 2010 Subject Classification: 65M06, 65M12, 65M15.

Key words: Boussinesq system, difference scheme, error estimates.

1. INTRODUCTION

We shall be concerned with developing difference schemes for approximating the solution $\{u(x,t), v(x,t)\}$, arising in the long water waves theory.

$$L_1[u,v] := \frac{\partial u}{\partial t} - \frac{\partial^3 u}{\partial t \partial x^2} + \alpha u \frac{\partial u}{\partial x} + a_0(x,t)u + a_1(x,t)v + a_2(x,t)\frac{\partial v}{\partial x} = f_1(x,t),$$

$$(1.1) (x,t) \in Q,$$

$$L_{2}[u,v] := \frac{\partial v}{\partial t} - \frac{\partial^{3} v}{\partial t \partial x^{2}} + \beta \frac{\partial}{\partial x}(uv) + b_{0}(x,t)v + b_{1}(x,t)u + b_{2}(x,t)\frac{\partial u}{\partial x} = f_{2}(x,t),$$
(1.2)
$$(x,t) \in Q,$$

(1.3)
$$u(x,0) = \varphi(x), v(x,0) = \psi(x), x \in \Omega,$$

$$(1.4) u(0,t) = v(0,t) = u(l,t) = v(l,t) = 0, t \in (0,T],$$

where $Q = \Omega \cup (0, T], \Omega = (0, l)$ and $\overline{\Omega}$ the closure of Ω . $a_k(x, t), b_k(x, t)(k = 0, 1, 2), f_k(x, t)(k = 1, 2), \varphi(x), \psi(x)$ are given sufficiently smooth function such as

$$\frac{\partial^s a_k}{\partial x^s}, \frac{\partial^s b_k}{\partial x^s}, \frac{\partial^s a_k}{\partial t^s}, \frac{\partial^s b_k}{\partial t^s} \in C(\overline{Q})(k, s = 0, 1, 2)$$

(1.5)
$$\frac{\partial^s f_k}{\partial x^s}, \frac{\partial^s f_k}{\partial t^s}, \in C(\overline{Q}) (k = 1, 2; \ s = 0, 1, 2)$$

MATH. REPORTS 15(65), 3 (2013), 243-248

and α , β are given constants.

The system (1.1)-(1.2) provides an approximate model for long gravity waves of small amplitude in one dimension [11, 5]. Here, u denotes horizontal velocity at the level of fluid, and v is the height of the surface above the undisturbed level.

The difference methods having first-order in time direction accuracy was investigated in [1, 2]. In [2] two-dimentional case and in [1] singularly perturbed case was considered. Note also, that many studies have been devoted to the socalled Sobolev or pseudo-parabolic equation [3, 4, 6–10, 12] (see, also references cited in them).

In this paper, we present a difference method with exponential fitting factors to problem (1.1)-(1.4). For the time variable we use Crank-Nicolson type discretization. The fully discrete scheme is shown to be second-order both accurate in space and time variables.

2. DIFFERENCE APPROXIMATION AND CONVERGENCE

Let a set of mesh nodes that discretises Q be given by

$$\omega_{h\tau} = \omega_h \times \omega_\tau$$

with

$$\begin{split} \omega_h &= \left\{ x_i = ih, i = 1, 2, \dots, N-1, h = l/N \right\}, \\ \omega_\tau &= \left\{ t_j = j\tau, i = 1, 2, \dots, N_0, \tau = T/N_0 \right\} \end{split}$$

and

$$\begin{split} \omega_h^+ &= \omega_h \cup \{x_N = l\}, \ \bar{\omega}_h = \omega_h \cup \{x_0 = 0, \ x_N = l\},\\ \bar{\omega}_\tau &= \omega_\tau \cup \{t_0 = 0\}, \ \bar{\omega}_{h\tau} = \bar{\omega}_h \times \bar{\omega}_\tau. \end{split}$$

Define the following finite differences for any mesh function $g_i = g(x_i)$ given on $\bar{\omega}_h$ by

$$g_{\bar{x},i} = \frac{g_i - g_{i-1}}{h}, \ g_{x,i} = \frac{g_{i+1} - g_i}{h}, \ g_{\substack{0\\x,i}} = \frac{g_{i+1} - g_{i-1}}{2h},$$
$$g_{\bar{x}x,i} = \frac{g_{i+1} - 2g_i + g_{i-1}}{h^2}.$$

Introduce the inner products for the mesh functions v_i and w_i defined on $\bar{\omega}_h$ as follows

$$(v,w)_0 \equiv (v,w)_{\omega_h} := \sum_{i=1}^{N-1} h v_i w_i,$$
$$(v,w] \equiv (v,w)_{\omega_h^+} := \sum_{i=1}^N h v_i w_i.$$

For any mesh function v_i , vanishing for i = 0 and i = N we introduce the norms

$$\begin{aligned} \|v\|_{0}^{2} &\equiv \|v\|_{0,\omega_{h}}^{2} := (v,v)_{0}, \ \|v\|_{0}^{2} := (v_{\bar{x}},v_{\bar{x}}], \\ \|v\|_{1}^{2} &: = \|v\|_{0}^{2} + \|v\|_{1}^{2}, \end{aligned}$$

Given a function $g \equiv g_i^j \equiv g(x_i, t_j)$ defined on $\bar{\omega}_{h\tau}$, we shall also use the notation

$$g_{\bar{t},i}^{j} = \frac{g_{i}^{j} - g_{i}^{j-1}}{\tau}, \ g_{t,i}^{j} = \frac{g_{i}^{j+1} - g_{i}^{j}}{\tau}$$

On the mesh $\omega_{h\tau}$, we approximate (1.1)–(1.4) by the following difference problem of Crank-Nicolson type

$$l_1[y_1, y_2] := y_{1\bar{t}} - \theta y_{1\bar{t}\bar{x}x} + \alpha S^{(0.5)}(y_1) + a_0^{(0.5)} y_1^{(0.5)} + a_1^{(0.5)} y_2^{(0.5)} + a_2^{(0.5)} y_{2x}^{0} = f_1^{(0.5)},$$

$$(2.1) (x,t) \in \omega_{h\tau},$$

$$l_{2}[y_{1}, y_{2}] := y_{2\bar{t}} - \theta y_{2\bar{t}\bar{x}x} + \beta (y_{1}y_{2})_{x}^{0} + b_{0}^{(0.5)}y_{2}^{(0.5)} + b_{1}^{(0.5)}y_{1}^{(0.5)} + b_{2}^{(0.5)}y_{1x}^{0} = f_{2}^{(0.5)},$$

$$(2.2) \qquad (x, t) \in \omega_{h\tau},$$

(2.3)
$$y_1(x,0) = \varphi(x), \ y_2(x,0) = \psi(x), x \in \bar{\omega}_h,$$

(2.4)
$$y_1 = y_2 = 0$$
, for $x = 0, \ell$ and $t \in \bar{\omega}_{\tau}$

where

$$\begin{split} g^{(0.5)} &\equiv g_i^{(0.5)j} = \frac{1}{2} \left(g_i^j + g_i^{j-1} \right), \\ S(y_{1,i}^j) &= \frac{1}{3} \left\{ \left(y_1^2 \right)_{\substack{0\\x,i}}^j + y_{1,i}^j y_{\substack{1\\x,i}}^j \right\}, \ \theta = \frac{h^2}{4 sinh^2(h/2)} \end{split}$$

,

Our method of approximating the convective term in equation (1.1) has the property that $(S(y_1), y_1)_{\omega_h} = 0$, *i.e.*, it preserves the analogous principle for the differential case.

We note that assumption (1.5) implies the existence of a unique solution $\{u, v\}$ to problem (1.1)–(1.4), belonging to $C^3(\bar{Q})$. Then, by the similar manner to that in [1–4], it can be shown that

$$\ell_k[u,v] + R_k = f_k, \ k = 1,2; \ (x,t) \in \omega_{h\tau}$$

with truncation errors R_k , such that

$$||R_k||_0 = O(h^2 + \tau^2), \ k = 1, 2; \ t \in \omega_{\tau}.$$

Further, from the identity

$$\tau \sum_{p=1}^{j} \left(\ell_1[y_1^p, y_2^p] - \ell_1[u^p, v^p], \ z_1^p\right)_0 + \tau \sum_{p=1}^{j} \left(\ell_2[y_1^p, y_2^p] - \ell_2[u^p, v^p], \ z_2^p\right)_0$$
$$= \tau \sum_{p=1}^{j} \sum_{k=1}^{2} \left(R_k, z_k^p\right)_0,$$

using summation by parts and appropriate difference embedding inequalities, for the errors $z_1 = y_1 - u$, $z_2 = y_2 - v$ by the similar technique described in [1, 2], we have

(2.5)
$$\delta_j \le C \left\{ \delta_* + \tau \sum_{p=1}^j \left(\delta_j + \delta_{j-1} + \delta_j^2 + \delta_{j-1}^2 \right) \right\}$$

with

$$\delta_{j} = \sum_{k=1}^{2} \left\{ \theta \left\| z_{k}^{j} \right\|_{1}^{2} + \| z_{k} \|_{0}^{2} \right\} \quad (\delta_{0} = 0),$$

$$\delta_{*} = \tau \sum_{w_{\tau}} \sum_{k=1}^{2} \| R_{k} \|_{0}^{2}$$

and constant C, that is independent of the mesh parameters. From (2.5), by an application of the difference analogue of Bernoulli inequality (see, also [1, 2]), for sufficiently small τ , we obtain

$$\delta_j \le C\delta_*, \ j = 1, 2, ..., N_0.$$

We summarize this result in the following theorem.

THEOREM 2.1. Under the conditions on a_k , b_k , f_k indicated in (1.5), the solution of (2.1)-(2.4) converges to the exact solution in the mesh norm $\|.\|_1$ with the rate $O(h^2 + \tau^2)$:

$$||y_1 - u||_1 + ||y_2 - v||_1 \le C(h^2 + \tau^2).$$

3. NUMERICAL RESULTS

In this section, we present numerical results obtained by applying the numerical method (2.1)-(2.4) to a particular problem

$$\begin{aligned} \frac{\partial u}{\partial t} &- \frac{\partial^3 u}{\partial t \partial^2 x} + 3u \frac{\partial u}{\partial x} + (e^{-t} + x^2)u = f(x, t), (x, t) \in [0, 1] \times [0, 1], \\ u(x, 0) &= \sin(\pi x) - 0.5x^2(1 - x), \\ u(0, t) &= u(1, t) = 0, \end{aligned}$$

where f is such that the exact solution is given by

$$u(x,t) = -\frac{1}{2}x^{2}(1-x) + e^{-t}\sin\pi x.$$

In the computations, the quasilinearization technique to the difference equation was used (see, [3]). The step sizes h and τ were both taken to be 0.025. The results at selected points are presented in Table 1.

Table	1
-------	---

(x,t)	Exact Solution	Approximate Solution	Pointwise Errors
(0.05, 0.05)	0.14761757	0.14761772	0.0000015
(0.15, 0.15)	0.38119074	0.38119121	0.0000047
(0.25, 0.25)	0.52725781	0.52725907	0.00000126
(0.35, 0.35)	0.58806919	0.58807119	0.00000200
(0.45, 0.45)	0.57409039	0.57409267	0.00000228
(0.55, 0.55)	0.50178410	0.50178641	0.00000231
(0.65, 0.65)	0.39120869	0.39121092	0.00000223
(0.75, 0.75)	0.26370109	0.26370237	0.00000128
(0.85, 0.85)	0.13985482	0.13985580	0.0000098
(0.95, 0.95)	0.03793713	0.03793732	0.0000019

The obtained results show an excellent degree of accuracy for the above described method.

Acknowledgment. This study is partially supported by Universiti Brunei Darussalam under Grant UBD/PNC2/2/RG/1(159).

REFERENCES

- G.M. Amiraliyev, On the numerical solution of the system of Boussinesque with boundary layers. USSR Modelling in Mechanics 3 (1988), 3-14.
- G.M. Amiraliyev, Difference method for the solution of one problem of the theory of dispersive waves. Differ. Eq. 26 (1990), 2146-2154.
- [3] G.M. Amiraliyev and I.G. Amiraliyeva, Difference schemes for the singularly perturbed Sobolev equations. In: S. Elaydi and J. Cushing (Eds.), Proceedings of the International Conference on Difference Equations, Special Functions and Applications. Münich, 25–30 July 2005, World Scientific, 2007, pp. 23–40.
- [4] G.M. Amiraliyev, H. Duru and I.G. Amiraliyeva, A Parameter-uniform numerical method for a Sobolev problem with initial layer. Numer. Algorithms 44 (2007), 185–203.
- [5] B.A. Bubnov, Solvability at large times of a mixed problems for some nonlinear third order equations. In: Matem. Modeling of Dynamics of Atmosphere and Ocean I, Novosibirsk, 1980, 47-58, (Russian).
- [6] R.E. Ewing, Numerical solution of Sobolev partial differential equations. SIAM J. Numer. Anal. 12 (1975), 345-363.
- [7] R.E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM J. Numer. Anal. 15 (1978), 1125-1150.
- [8] W.H. Ford and T.W. Ting, Uniform error estimates for difference approximations to nonlinear pseudo-parabolic partial differential equations. SIAM J. Numer. Anal. 15 (1974), 155-169.

- M. Yang, Analysis of second order finite volume element methods for pseudo-parabolic equations in three spatial dimensions. Appl. Math. Comput. 196 (2008), 94-104.
- [10] H. Gu, Characteristic finite element methods for non-linear Sobolev equations. Appl. Math. Comput. 102 (1999), 51-62.
- R.E. Showalter, Well-posed problems for some nonlinear dispersive waves. J. Math. Pures Appl. 56 (1977), 123-135.
- [12] T. Sun and D. Yang, The finite difference streamline diffusion methods for Sobolev equations with convection-dominated term. Appl. Math. Comput. 125 (2002), 325-345.

Received 16 September 2011

Sinop University, Faculty of Sciences, Department of Statistics, 5700 Sinop, Turkey ailhame@gmail.com