
SOLUTION OF HALLEN’S INTEGRAL EQUATION
BY USING RADIAL BASIS FUNCTIONS

AMJAD ALIPANAH

Communicated by the former editorial board

In this paper, we present a numerical method for solving Hallen’s integral equa-
tion based on radial basis functions (RBFs). This method will represent the
solution of Hallen’s integral equation by interpolating the radial basis functions
based on Legendre-Gauss-Lobatto(LGL) nodes and weights. The numerical re-
sults show that the proposed method for Hallen’s integral equation is very accu-
rate and efficient.
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1. INTRODUCTION

Erik Hallen [1] wrote his famous integral equation to give an exact treat-
ment of antenna current wave reflection at the end of the tube shaped cylindri-
cal antenna in 1956, but his first work on this subject [2] probably goes back
to 1938. This equation enabled him to show that on thin wire the current
distribution is approximately sinusoidal and propagates with nearly the speed
of the light.

The Hallen’s integral equation is a Fredholm integral equation of the first
kind. This equation for the thin-wire cylindrical antenna of length l and radius
a with a� l is given by

(1.1)

∫ `
2

− `
2

K(x′, y′)I(y′)dy′ =


2ζ0
V sin(β|x′|) +Acos(βx′),

−l
2
< x′ <

−l
2

where

(1.2) K(x′, y′) =
1

4π

e−jβ
√

(x′−y′)2+a2√
(x′ − y′)2 + a2

.

In Eqs. (1.1) and (1.2), ζ0 = 120π and β = 2π/λ is the free wavenumber where
λ is wavelenght, I(y′) is the current, V is the driven voltage and A is a constant.
The boundary conditions for the equation (1) are I(−`/2) = I(`/2) = 0.
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The kernel in Eq. (1.2) is sharply peaked when x′ = y′, particularly
for small value of a that may lead to an ill conditioned numerical formulation,
thus making difficult to formulate a robust numerical algorithm. There are two
choices of K(x′, y′). The two kernels are usually referred to as the exact and
the approximate or reduced kernel [3]. Many different methods have been used
to estimate the solution of Hallen’s integral equation such as, finite element
methods [4], a general method for solving dual integral equation is presented
and applied to Hallen’s integral equation in [5], multi-wavelets [6] and sinc
collocation method [7]. In [3, 4] the difficulties associated with solving Hallen’s
equation numerically were considered in detail.

Radial basis functions(RBFs), introduced by R. Hardy [9, 10], form a pri-
mary tool for multivariate interpolation, and they are also receiving increased
attention for solving PDE in irregular domains [8]. Hardy [9] showed that
multiquadrics RBFs are related to a consistent solution of the biharmonic po-
tential problem and thus, has a physical foundation. Buhmann and Micchelli
[11] and Chiu et al. [8, 12] have shown that RBFs are related to pre-wavelets
(wavelets that do not have orthogonality properties). RBFs have been popu-
lar in high-dimensional approximation [8] and are increasingly being used in
the numerical solution of partial differential equations. Also, Alipanah and
Dehghan [14], using RBFs for solution of nonlinear integral equation in one
dimensional.

In this paper, we use the idea of the interpolation by RBFs to approximate
the solution of the Hallen’s integral equation. Also, the collocation points
for the interpolation and quadrature formula are based on Legendre-Gauss-
Lobbato (LGL) nodes.

This paper organized as follows: in Section 2 we introduce positive defi-
nite or radial basis functions and their properties. In Section 3, we introduce
Legendre-Gauss-Lobatto nodes and weights. In Section 4, the proposed method
is used to approximate the Hallen’s integral equation. Finally, in Section 5 we
report our numerical finding and demonstrate the accuracy of the proposed
numerical scheme by considering numerical examples.

2. STRICTLY POSITIVE DEFINITE FUNCTIONS

Let the values of function f ∈ L2[a, b] on nodes xi, i = 0, 1, · · · , N be
given, if

F (xi) = f(xi), i = 0, 1, · · · , N,

then we say that F (x) interpolates the given data
{

(xi, f(xi))
}N
i=0
.
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The linear interpolation problem is a special case that arises when F (x)
is to be chosen from a prescribed N dimensional vector space of functions on
[a, b].

Then the function F (x) can be represented as

F (x) =
N∑
j=0

cjuj(x).

When the interpolation conditions are imposed on F (x), we obtain

f(xi) = F (xi) =
N∑
j=0

cjuj(xi), i = 0, 1, · · · , N.

This is a system of (N+1) linear equations in (N+1) unknowns Ac = y, i.e.
u0(x0) u1(x0) · · · uN (x0)
u0(x1) u1(x1) · · · uN (x1)

...
...

...
...

u0(xN ) u1(xN ) · · · uN (xN )



c0
c1
...
cN

 =


f(x0)
f(x1)

...
f(xN )

 .
The (N + 1) × (N + 1) matrix A is called the interpolation matrix. In

order that this system is solvable for any choice of f(xi), it is necessary and
sufficient that the interpolation matrix be nonsingular.

Definition. Let the values of function f(x) at nodes xi, i = 0, 1, · · · , N
be given. We say that f(x) is interpolated by translating a single function
φ(x), if a linear combination of (N+1) transition of φ(x) exists such that F (x)
interpolates f(x) at nodes [17], i.e.,

F (x) =
N∑
j=0

cjφ(x− vj),

and

f(xi) = F (xi) =

N∑
j=0

cjφ(xi − vj), i = 0, 1, · · · , N.

There are a lot of functions φ(x) that can be used as a linear combination
for interpolating a function. Generally, it isn’t necessary that vj = xi, i, j =
0, 1, · · · , N , but in this paper for simplicity, we use a class of functions which
it’s transition can be used in the case vi=xi, i=0, 1,· · ·, N in interpolation, i.e.

f(xi) = F (xi) =

N∑
j=0

cjφ(xi − xj), i = 0, 1, · · · , N.
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Definition. A function φ on [a, b] is said to be positive definite if for any
set of points x0, x1, · · · , xN in [a, b] the (N+1)×(N+1) matrix Aij = φ(xi−xj)
is nonnegative definite, i.e.

UTAU =

N∑
i=0

N∑
j=0

uiujAij ≥ 0,

for all U ∈ R(N+1). If UTAU > 0 whenever the points xi are distinct and
U 6= 0, then we say that φ(x) is strictly a positive definite function [12–17].

If φ(x) is a strictly positive definite function on a linear space, then the
eigenvalues of A are positive and its determinant is positive. Therefore, we can
use a linear combination translation of φ(x) to interpolate [17].

Definition. A function f(x) is said to be completely monotone on [0,∞),
if for x > 0 we have

1. f ∈ C∞[0,∞), 2. (−1)kf (k)(x) ≥ 0.

A real-valued function F on an inner-product space is said [17] to be
radial if F (x) = F (y) whenever ‖x‖ = ‖y‖. Now, we present a theorem that
introduces a large number of strictly positive definite or radial basis functions.

Theorem (Bochner’s Theorem [17]). Let f be a nonnegative Borel func-
tion on R, if 0 <

∫
R f < ∞, then f̂ is strictly positive definite, where f̂ is the

Fourier transform of function f , which

f̂(x) =

∫ +∞

−∞
f(y)eixydy.

We can find many strictly positive definite functions by using this the-
orem. In Table 1, we give some positive definite functions (RBFs) by using
Bochner’s Theorem.

Table 1
Strictly positive definite functions that satisfy Bochner’s Theorem

f1(x) = 1+x2

π
f̂1(x) = e−|x|

f2(x) = e−|x|

2
f̂2(x) = 1

1+x2

f3(x) = π−
1
2 e−x

2

f̂3(x) = e−
x2

4

f4(x) = 1+x−2

2π
f̂4(x) = |x|−1(1− e−|x|)

f5(x) = sech(πx) f̂5(x) = sech(x
2
)

f6(x) = 1−xcsch(x)
2x2

f̂6(x) = log(1 + e
− π
|x| )
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Thus, for any set of distinct points x0, x1, · · · , xN on X, the matrix Aij =

f̂(‖xi − xj‖2) is strictly positive definite.

3. LEGENDRE-GAUSS-LOBATTO NODES AND WEIGHTS

Let LN (x) be the shifted Legendre polynomial of order N on [−1, 1].
Then the Legendre-Gauss-Lobatto nodes are

(3.1) x0 = −1 < x1 < · · · < xN−1 < xN = 1,

and xm, 1 ≤ m ≤ N − 1 are the zeros of L̇(x), where L̇(x) is the derivative
of LN (x) with respect to x. No explicit formulas are known for the points xm,
and so, they are computed numerically using subroutines [20].

Also, we approximate the integral of f on [−1, 1] as

(3.2)

∫ 1

−1
f(x)dx =

N∑
i=0

wif(xi),

where xi are Legendre-Guass-Lobatto nodes in equation (3.1) and the weights
wi given in [20, p. 76].

wi =
2

N(N + 1)[LN (xi)]2
, i = 0, 1 · · · , N.

It is well known that the integration in equation (3.2) is exact whenever
f(x) is a polynomial of degree ≤ 2N + 1.

4. ILLUSTRATE THE SOLUTION OF HALLEN’S INTEGRAL EQUATION

Equation (1.1) can be normalized by changing the independent variables
to x′ = `

2x and y′ = `
2y. Therefore, the Hallen’s integral equation and the

condition I(− `
2) = I( `2) = 0 may be written as follows

(4.1)
`

2

∫ 1

−1
K

(
`

2
x,
`

2
y

)
I(y)dy = f(x), −1 < x < 1

and

(4.2) I(−1) = I(1) = 0,

where

f(x) =


2ζ0
V sin(β| `

2
x|) +Acos(β

`

2
x), −1 < x < 1.

When x = y, the kernel in equation (4.1) is sharply peaked, particulary
for small value of a. Therefore, from the computational point of view, it would
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be advantageous to isolate and extract the singularity from kernel. This may
be accomplish by writing K

(
`
2x,

`
2y
)

as

(4.3) K

(
`

2
x,
`

2
y

)
= Kn

(
`

2
x,
`

2
y

)
+Ks

(
`

2
x,
`

2
y

)
,

where Kn

(
`
2x,

`
2y
)

and Ks

(
`
2x,

`
2y
)

denote the nonsingular and singular parts
of kernel K respectively, and are given in [3] as

(4.4) Kn

(
`

2
x,
`

2
y

)
=

1

4π

e
−jβ

√
( `
2
x− `

2
y)2+a2 − 1√

( `2x−
`
2y)2 + a2

,

(4.5) Ks

(
`

2
x,
`

2
y

)
=

1

4π

1√
( `2x−

`
2y)2 + a2

,

By using equation (4.3) we can express equation (4.1) as

(4.6)
`

2

∫ 1

−1
Kn

(
`

2
x,
`

2
y

)
I(y)dy+

`

2

∫ 1

−1
Ks

(
`

2
x,
`

2
y

)
I(y)dy = f(x), −1<x<1.

The integrand of the first integral in equation (4.6) is well behaved and as
a consequence may be evaluated numerically, but the second integral contains
a singularity and will be evaluated as follows. Let

(4.7)

∫ 1

−1
Ks

(
`

2
x,
`

2
y

)
I(y)dy = S1(x) + S2(x),

where

(4.8) S1(x) =

∫ 1

−1
Ks

(
`

2
x,
`

2
y

)
(I(y)− I(x)) dy,

and

(4.9) S2(x) = I(x)

∫ 1

−1
Ks

(
`

2
x,
`

2
y

)
dy,

The integrand of the integral in equation (4.8) is well behaved, and the
integral in equation (4.9) can be evaluated as

(4.10) H(x) =

∫ 1

−1
Ks

(
`

2
x,
`

2
y

)
dy =

1

4πl
ln

[√
(lx− l)2 + 4a2 + lx− l√
(lx− l)2 + 4a2 − lx− l

]
.

In view of equations (4.6)–(4.10), equation (4.1) is expressed by

(4.11)
`

2

∫ 1

−1
Kn

(
`

2
x,
`

2
y

)
I(y)dy +

`

2

∫ 1

−1
Ks

(
`

2
x,
`

2
y

)
(I(y)−

I(x))dy +
`

2
I(x)H(x) = f(x).
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We approximate I(x), in equation (4.11) with interpolation by EBFs φ(x)
as follows,

(4.12) IN (x) =
N∑
j=0

cjφ(x− xj) = CTΨ(x),

where xj , j = 0, 1, · · · , N are LGL nodes given in equation (3.1) and Ψ(x) =[
φ(x− x0), φ(x− x1), · · · , φ(x− xN )

]T
and C =

[
c0, c1, · · · , cN

]T
.

By substituting equation (4.12) in equation (4.1) we have that
(4.13)

CT
(∫ 1

−1
Kn

(
`

2
x,
`

2
y

)
Ψ(y)dy+

∫ 1

−1
Ks

(
`

2
x,
`

2
y

)
(Ψ(y)−Ψ(x))dy+Ψ(x)H(x)

)
=

2f(x)

l
,

For obtaining cj , j = 0, 1, · · · , N in the above equation, by collocating at
the points x = xi for i = 0, 1, 2, · · · , N we have that

(4.14)

CT
(∫ 1

−1

[
Kn

(
`

2
xi,

`

2
y

)
Ψ(y)+Ks

(
`

2
xi,

`

2
y

)(
Ψ(y)−Ψ(xi)

)]
dy+Ψ(xi)H(xi)

)
=

2f(xi)

l
,

By applying numerical integration methods in equation (3.2), we can
approximate the integrals in equation (4.14) hence, this equation can be written
as follow

(4.15) CT
(
Q(xi) + Ψ(xi)H(xi)

) l
2

= f(xi), i = 0, 1, · · · , N.

where Q(xi) is a vector as follows

Q(xi) =
N∑
j=0

wj

[
Kn

(
`

2
xi,

`

2
xj

)
Ψ(xj) +Ks

(
`

2
xi,

`

2
xj

)
(Ψ(xj)−Ψ(xi))

]
.

Equation (4.15) is a linear system of equations that we can solve by iter-
ation methods to obtain unknown vector CT .

5. NUMERICAL EXAMPLES

In this section, two numerical examples are presented to illustrate the
validity and the merits of this technique. Using two RBFs φ1(x) = e−r

2x2 and
φ2(x) = 1

1+x2
to approximate the Hallen’s integral equation. In both examples

data are given for two selected wire lengths so that they include special cases
of practical interest, e.g., l = λ

2 and l = λ and a = 0.0005λ(λ = 2) and V = 1.
In Fig. 1, |IN (x)| for l = λ, N = 20 and r = 6 has been shown. Also, the
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magnitude of IN (x) for l = λ
2 and N = 20 has been shown in Fig. 2. All

computational efforts in this work have been done by Maple software in 20
decimal digits.

Fig. 1 – The magnitude of I20(x) for l = λ.

Fig. 2 – The magnitude of I20(x) for l = λ
2

.
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6. CONCLUSION

In this article, we have investigated the application of interpolation via
radial basis functions for solving the Hallen’s integral equation. The basis is
very simple and simplicity can be used rather than the other basis [3–8] to ap-
proximate the Hallen’s integral equation. Also, this method has high accuracy.
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