ON (-1)-WEAK AMENABILITY OF BANACH ALGEBRAS

M. ESHAGHI GORDJI, S.A.R. HOSSEINIOUN and A. VALADKHANI

Communicated by the former editorial board

Abstract

For a Banach algebra A, its second dual $A^{\prime \prime}$ is (-1)-weakly amenable if A^{\prime} is a Banach $A^{\prime \prime}$-bimodule and the first cohomology group of $A^{\prime \prime}$ with coefficients in A^{\prime} is zero, i.e. $H^{1}\left(A^{\prime \prime}, A^{\prime}\right)=\{0\}$. In this paper, we study the (-1)-weak amenability of the second dual of James algebras. Moreover, we show that $\operatorname{Lip}_{\alpha} \mathbb{T}$ is not (-1)-weakly amenable if $\frac{1}{2}<\alpha<1$ and \mathbb{T} is the unit circle.

AMS 2010 Subject Classification: 46H25.
Key words: derivation, amenability, cohomology, second dual, Arens product.

1. INTRODUCTION

Let A be a Banach algebra and E be a Banach A-bimodule, then a bounded derivation from A into E is a bounded linear map $D: A \longrightarrow E$ such that for each $a, b \in A, D(a \cdot b)=D a \cdot b+a \cdot D b$. For example, let $x \in X$ and define $\delta_{x}: A \longrightarrow E$ by $\delta_{x} a=a \cdot x-x \cdot a$, then δ_{x} is a bounded derivation which is called an inner derivation. Then $Z^{1}(A, E)$ is the space of all bounded derivations from A into $E, N^{1}(A, E)$ is the space of all inner derivations from A into E, and the first cohomology group of A with coefficients in E is the quotient space $H^{1}(A, E)=\frac{Z^{1}(A, E)}{N^{1}(A, E)}$.

A Banach algebra A is amenable if $H^{1}\left(A, E^{\prime}\right)=\{0\}$ for each Banach A-bimodule E. This concept was introduced by B.E. Johnson in [5].

The notion of weak amenability was introduced by W.G. Bade, P.C. Curtis and H.G. Dales in [1] for commutative Banach algebras. Later, Johnson defined weak amenability for arbitrary Banach algebras in [6], in fact a Banach algebra A is weakly amenable if $H^{1}\left(A, A^{\prime}\right)=\{0\}$.

Let A be a Banach algebra and $A^{\prime \prime}$ be its second dual, for each $a, b \in A$, $f \in A^{\prime}$ and $F, G \in A^{\prime \prime}$ we define $f \cdot a, a \cdot f$ and $F \cdot f, f \cdot F \in A^{\prime}$ by

$$
\begin{aligned}
& f \cdot a(b)=f(a \cdot b), \quad a \cdot f(b)=f(b \cdot a) \\
& F \cdot f(a)=F(f \cdot a), \quad f \cdot F(a)=F(a \cdot f) .
\end{aligned}
$$

Now, we define $F \cdot G, F \times G \in A^{\prime \prime}$ as follows

$$
F \cdot G(f)=F(G \cdot f), \quad F \times G(f)=G(f \cdot F)
$$

Then $A^{\prime \prime}$ is a Banach algebra with respect to either of the products • and \times. These products are called respectively, the first and the second Arens products on $A^{\prime \prime}$. Then A is called Arens regular if $F \cdot G=F \times G$, for all $F, G \in A^{\prime \prime}$. In this paper, $A^{\prime \prime}$ is considered with the first Arens product.

In [7], A. Medghalchi and T. Yazdanpanah, introduced the notion of (-1)-weak amenability. A Banach algebra A is (-1)-weakly amenable if A^{\prime} is a Banach $A^{\prime \prime}$-bimodule and $H^{1}\left(A^{\prime \prime}, A^{\prime}\right)=\{0\}$.

Here, we give some examples which are and some others which are not (-1)-weakly amenable Banach algebras. For example, in Theorem 2.2 we show that $\operatorname{Lip} \mathbb{T}$ is not (-1)-weakly amenable for $\frac{1}{2}<\alpha<1$, where \mathbb{T} is the unit circle.

Also, for James algebra $\mathcal{J}, \mathcal{J}^{\prime \prime}$ is (-1)-weakly amenable, see Example 2.2.
For (-1)-weak amenability of a Banach algebra we need A^{\prime} to be a Banach $A^{\prime \prime}$-bimodule, in [4] we give some conditions, for a Banach A-bimodule X, which makes X^{\prime} a Banach $A^{\prime \prime}$-bimodule.

Let X be a Banach space, then $\iota: X \longrightarrow X^{\prime \prime}$ is the natural embedding and ι_{x} is denoted by $\hat{x}(x \in X)$, and \hat{X} is the natural embedding of X in $X^{\prime \prime}$.

Let A be a Banach algebra and let E be a Banach A-bimodule, then the iterated conjugates of E, denoted by $E^{\prime}, E^{\prime \prime}, E^{\prime \prime \prime}, \ldots$ are Banach A-bimodules, and the map $\rho: E^{\prime \prime \prime} \longrightarrow E^{\prime}$ with $\rho(\Gamma)=\left.\Gamma\right|_{\hat{E}}$ is an A-bimodule homomorphism which is called natural projection.

All concepts and definitions which are not defined in this paper may be found in [2] and [3].

2. MAIN RESULTS

Let A be a Banach algebra with a closed ideal I. Then, we have the identifications

$$
(A / I)^{\prime} \simeq I^{0}, \quad(A / I)^{\prime \prime} \simeq A^{\prime \prime} / I^{\prime \prime}
$$

where $I^{0}=\left\{\lambda \in A^{\prime}:\left.\lambda\right|_{I}=0\right\}$.
Let E be a Banach A-bimodule and I be a closed ideal in A, then E is a Banach I-bimodule. In the case $I E=E I$, we have E is a Banach A / I bimodule.

Let I be an ideal in A. Then I has the trace extension property in A, whenever for each $\lambda \in I^{\prime}$ with $a \cdot \lambda=\lambda \cdot a(a \in A)$, there exists $\tau \in A^{\prime}$ such that $\left.\tau\right|_{I}=\lambda$ and $a \cdot \tau=\tau \cdot a,(a \in A)$.

For a Banach algebra A, we define the center of $\left(A^{\prime \prime}, \cdot\right)$ as follows,

$$
Z\left(A^{\prime \prime}, \cdot\right)=\left\{F \in A^{\prime \prime}: F \cdot G=F \times G,\left(G \in A^{\prime \prime}\right)\right\}
$$

Theorem 2.1. Let A be a Banach algebra and, I be a closed ideal in A and its second dual $I^{\prime \prime}$, be a closed ideal in $A^{\prime \prime}$. Then
(1) If $A^{\prime \prime} / I^{\prime \prime}$ is (-1)-weakly amenable, then I has trace extension property.
(2) If $A^{\prime \prime}$ is (-1)-weakly amenable and $I^{\prime \prime} \subseteq Z\left(\left(A^{\prime \prime}, \cdot\right)\right)$ and $I^{\prime \prime}$ has the trace extension property, then $A^{\prime \prime} / I^{\prime \prime}$ is (-1)-weakly amenable.
(3) If $I^{\prime \prime}$ and $A^{\prime \prime} / I^{\prime \prime}$ are (-1)-weakly amenable and $\overline{I^{\prime \prime 2}}=I^{\prime \prime}$ and A^{\prime} is a Banach $A^{\prime \prime}$-bimodule, then $A^{\prime \prime}$ is (-1)-weakly amenable.

Proof. (1) Let $\lambda \in I^{\prime}$ with $a \cdot \lambda=\lambda \cdot a$, for all $a \in A$. By Hahn-Banach theorem there exists $f \in A^{\prime}$ such that $\left.f\right|_{I}=\lambda$. We define

$$
\begin{aligned}
& D: A^{\prime \prime} / I^{\prime \prime} \longrightarrow I^{0}=(A / I)^{\prime} \\
& D\left(F+I^{\prime \prime}\right)=F \cdot f-f \cdot F \quad\left(F \in A^{\prime \prime}\right)
\end{aligned}
$$

then for each $x \in I$ and $F \in A^{\prime \prime}$ with $F=w^{*}-\lim _{\alpha} \hat{a}_{\alpha}$, we have

$$
\begin{aligned}
D\left(F+I^{\prime \prime}\right)(x) & =(F \cdot f-f \cdot F)(x)=F(f \cdot x-x \cdot f) \\
& =\lim _{\alpha} f\left(x \cdot a_{\alpha}-a_{\alpha} \cdot x\right)=\lim _{\alpha} \lambda\left(x \cdot a_{\alpha}-a_{\alpha} \cdot x\right) \\
& =\lim _{\alpha} \hat{a}_{\alpha}(\lambda \cdot x-x \cdot \lambda)=0
\end{aligned}
$$

It follows that D is a bounded derivation in $Z^{1}\left(A^{\prime \prime} / I^{\prime \prime}, I^{0}\right)$. By (-1)-weak amenability of $A^{\prime \prime} / I^{\prime \prime}$, there exists $\lambda_{0} \in I^{0}$ such that $D(F+I)=F \cdot \lambda_{0}-\lambda_{0} \cdot F$. Now, put $\tau=f-\lambda_{0} \in A^{\prime}$, then for each $a \in A$

$$
a \cdot \tau-\tau \cdot a=(a \cdot f-f \cdot a)-\left(a \cdot \lambda_{0}-\lambda_{0} \cdot a\right)=D\left(\hat{a}+I^{\prime \prime}\right)-D\left(\hat{a}+I^{\prime \prime}\right)=0
$$

so, $a \tau=\tau a$. Moreover, since $\lambda_{0} \in I^{0}$ and $\left.f\right|_{I}=\left.\lambda\right|_{I}$, then $\tau(x)=f(x)-\lambda_{0}(x)=$ $\lambda(x)$, and $\left.\tau\right|_{I}=\lambda$. It follows that $a \tau=\tau a$, for all $a \in A$.
(2) First, we show that I^{0} is a Banach $A^{\prime \prime} / I^{\prime \prime}$-bimodule. Since $A^{\prime \prime}$ is (-1)weakly amenable, then A^{\prime} is an $A^{\prime \prime}$-bimodule and for each $\lambda \in I^{0}$ and $F \in A^{\prime \prime}$, we have $\lambda \cdot F, F \cdot \lambda \in I^{0}$ so I^{0} is an $A^{\prime \prime}$-bimodule. On the other hand, since $I^{\prime \prime}$ is a closed ideal in $A^{\prime \prime}$, then I^{0} is an $I^{\prime \prime}$-bimodule and since $I^{0} \cdot I^{\prime \prime}=I^{\prime \prime} \cdot I^{0}=0$ then I^{0} is a Banach $A^{\prime \prime} / I^{\prime \prime}$-bimodule. Let $D \in Z^{1}\left(A^{\prime \prime} / I^{\prime \prime},(A / I)^{\prime}\right)$ and let $\pi: A \longrightarrow A / I, a \mapsto a+I$ be the quotient map. We define $\tilde{D}=\pi^{\prime} \circ D \circ \pi^{\prime \prime}$ i.e.,

$$
\begin{aligned}
& \tilde{D}: A^{\prime \prime} \longrightarrow A^{\prime} \\
& \tilde{D}(F)(a)=D\left(F+I^{\prime \prime}\right)(a+I) \quad\left(a \in A, F \in A^{\prime \prime}\right)
\end{aligned}
$$

then $\tilde{D} \in Z^{1}\left(A^{\prime \prime}, A^{\prime}\right)$, since for each $F, G \in A^{\prime \prime}$ with $F=w^{*}-\lim _{\alpha} \hat{a}_{\alpha}$ and $G=w^{*}-\lim _{\beta} \hat{b}_{\beta}$ we have

$$
\begin{aligned}
\tilde{D}(F \cdot G)(a) & =D\left(F \cdot G+I^{\prime \prime}\right)(a+I)=D\left(\left(F+I^{\prime \prime}\right) \cdot\left(G+I^{\prime \prime}\right)\right)(a+I) \\
& =\left(D\left(F+I^{\prime \prime}\right) \cdot\left(G+I^{\prime \prime}\right)+\left(F+I^{\prime \prime}\right) \cdot D\left(G+I^{\prime \prime}\right)\right)(a+I)
\end{aligned}
$$

$$
\begin{aligned}
= & G+I^{\prime \prime}\left((a+I) \cdot D\left(F+I^{\prime \prime}\right)\right)+F+I^{\prime \prime}\left(D\left(G+I^{\prime \prime}\right) \cdot(a+I)\right) \\
= & \lim _{\beta}\left(\hat{b}_{\beta}+I^{\prime \prime}\right)\left((a+I) \cdot D\left(F+I^{\prime \prime}\right)\right) \\
& \quad+\lim _{\alpha}\left(\hat{a}_{\alpha}+I^{\prime \prime}\right)\left(D\left(G+I^{\prime \prime}\right) \cdot(a+I)\right) \\
= & \lim _{\beta} D\left(F+I^{\prime \prime}\right)\left(b_{\beta} \cdot a+I\right)+\lim _{\alpha} D\left(G+I^{\prime \prime}\right)\left(a \cdot a_{\alpha}+I\right) \\
= & \lim _{\beta} \tilde{D} F\left(b_{\beta} \cdot a\right)+\lim _{\alpha} \tilde{D} G\left(a \cdot a_{\alpha}\right)=\lim _{\beta} a \cdot \tilde{D} F\left(b_{\beta}\right) \\
& \quad+\lim _{\alpha} \tilde{D} G \cdot a\left(a_{\alpha}\right) \\
= & \lim _{\beta} \hat{b}_{\beta}(a \cdot \tilde{D} F)+\lim _{\alpha} \hat{a}_{\alpha}(\tilde{D} G \cdot a)=G(a \cdot \tilde{D} F)+F(\tilde{D} G \cdot a) \\
= & (\tilde{D} F \cdot G+F \cdot \tilde{D} G)(a) .
\end{aligned}
$$

On the other hand, if $A^{\prime \prime}$ is (-1)-weakly amenable then there exists $\lambda_{0} \in$ A^{\prime} such that $\tilde{D} F=F \cdot \lambda_{0}-\lambda_{0} \cdot F$, for all $F \in A^{\prime \prime}$. For $G \in I^{\prime \prime}$ we have $G \cdot \lambda_{0}-\lambda_{0} \cdot G=\tilde{D} G=D\left(G+I^{\prime \prime}\right)=0$ so, $G \cdot \lambda_{0}=\lambda_{0} \cdot G$. Let $\hat{\lambda}_{0} \in A^{\prime \prime \prime}$ defined by $\hat{\lambda}_{0}(F)=F\left(\lambda_{0}\right)$, for all $F \in A^{\prime \prime}$. We have $I^{\prime \prime} \subseteq Z\left(\left(A^{\prime \prime}, \cdot\right)\right)$, then for each $F \in A^{\prime \prime}$ and $G \in I^{\prime \prime}$, we have

$$
\begin{aligned}
F \cdot \hat{\lambda}_{0}(G) & =\hat{\lambda}_{0}(G \cdot F)=F\left(\lambda_{0} \cdot G\right)=F\left(G \cdot \lambda_{0}\right) \\
& =F \cdot G\left(\lambda_{0}\right)=\hat{\lambda}_{0}(F \cdot G)=\hat{\lambda}_{0} \cdot F(G)
\end{aligned}
$$

If we take $\theta_{0}=\left.\hat{\lambda}_{0}\right|_{I^{\prime \prime}} \in I^{\prime \prime \prime}$, then we have $F \cdot \theta_{0}=\theta_{0} \cdot F$. Since $I^{\prime \prime}$ has the trace extension property, then there exists $\Lambda_{0} \in A^{\prime \prime \prime}$ such that $\left.\Lambda_{0}\right|_{I^{\prime \prime}}=\theta_{0}$ and $F \cdot \Lambda_{0}=\Lambda_{0} \cdot F$, for all $F \in A^{\prime \prime}$. For each $a \in A$, we define $\tau \in A^{\prime}$ by $\tau(a)=\lambda_{0}(a)-\Lambda_{0}(\hat{a})$, (more precisely $\tau=\rho\left(\hat{\lambda}_{0}-\Lambda_{0}\right)$, where $\rho: A^{\prime \prime \prime} \longrightarrow A^{\prime}$ is the natural projection). Then

$$
\tau(x)=\lambda_{0}(x)-\Lambda_{0}(\hat{x})=\hat{\lambda}_{0}(\hat{x})-\Lambda_{0}(\hat{x})=\theta_{0}(\hat{x})-\Lambda_{0}(\hat{x})=0
$$

for all $x \in I$, we have $\tau \in I^{0}$. (Note, that since $I^{0}=(A / I)^{\prime}$ then we can assume τ as an element in $\left.(A / I)^{\prime}\right)$. On the other hand, we have $\tilde{D}=\delta_{\lambda_{0}}$ and $\left.\tau\right|_{I}=0$ then for each $a \in A$ and $F \in A^{\prime \prime}$ with $F=w^{*}-\lim _{\alpha} \hat{a}_{\alpha}$, we have

$$
\begin{aligned}
D\left(F+I^{\prime \prime}\right)(a+I) & =\tilde{D}(F)(a)=\left(F \cdot \lambda_{0}-\lambda_{0} \cdot F\right)(a) \\
& =F\left(\lambda_{0} \cdot a-a \cdot \lambda_{0}\right)=\lim _{\alpha} \hat{a}_{\alpha}\left(\lambda_{0} \cdot a-a \cdot \lambda_{0}\right) \\
& =\lim _{\alpha} \lambda_{0}\left(a \cdot a_{\alpha}-a_{\alpha} \cdot a\right)-\lim _{\alpha}\left(\Lambda_{0} \cdot \hat{a}-\hat{a} \cdot \Lambda_{0}\right)\left(\hat{a}_{\alpha}\right) \\
& =\lim _{\alpha}\left(\lambda_{0}\left(a \cdot a_{\alpha}-a_{\alpha} \cdot a\right)-\Lambda_{0}\left(a \cdot \widehat{a_{\alpha-}-a_{\alpha}} \cdot a\right)\right) \\
& =\lim _{\alpha} \tau\left(a \cdot a_{\alpha}-a_{\alpha} \cdot a\right)=\lim _{\alpha} \tau\left(a \cdot a_{\alpha}-a_{\alpha} \cdot a+I\right) \\
& =\lim _{\alpha} \tau\left((a+I)\left(a_{\alpha}+I\right)-\left(a_{\alpha}+I\right)(a+I)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{\alpha}(\tau \cdot(a+I)-(a+I) \cdot \tau)\left(a_{\alpha}+I\right) \\
& =\lim _{\alpha} \hat{a}_{\alpha}+I^{\prime \prime}(\tau \cdot(a+I)-(a+I) \cdot \tau) \\
& =\left(F+I^{\prime \prime}\right)(\tau \cdot(a+I)-(a+I) \cdot \tau) \\
& =\left(\left(F+I^{\prime \prime}\right) \cdot \tau-\tau \cdot\left(F+I^{\prime \prime}\right)\right)(a+I) .
\end{aligned}
$$

Therefore, $D\left(F+I^{\prime \prime}\right)=\delta_{\tau}\left(F+I^{\prime \prime}\right)$ and $H^{1}\left(A^{\prime \prime} / I^{\prime \prime},(A / I)^{\prime}\right)=0$.
(3) Let $D \in Z^{1}\left(A^{\prime \prime}, A^{\prime}\right)$ and $i: I \longrightarrow A$ be the inclusion mapping. For $F \in I^{\prime \prime}, x \in I$ we define $D_{1}=i^{\prime} \circ D \circ i^{\prime \prime}$, i.e.

$$
D_{1}(F)=\left.D\left(i^{\prime \prime}(F)\right)\right|_{I} \quad\left(F \in A^{\prime \prime}\right) .
$$

We see immediately that $D_{1} \in Z^{1}\left(I^{\prime \prime}, I^{\prime}\right)$. Since $I^{\prime \prime}$ is (-1)-weakly amenable, then there exists $\lambda_{1} \in I^{\prime}$ with $D_{1} F=F \cdot \lambda_{1}-\lambda_{1} \cdot F$, for all $F \in A^{\prime \prime}$. Now, extend λ_{1} to an element in A^{\prime}, say λ_{0} and put $D_{2}=D-\delta_{\lambda_{0}}$. Then $D_{2} \in Z^{1}\left(A^{\prime \prime}, A^{\prime}\right)$ and $\left.D_{2}\right|_{I^{\prime \prime}}=0$. Let $a \in A$ and $F, G \in I^{\prime \prime}$ with $F=w^{*}-\lim _{\alpha} \hat{a}_{\alpha}$ and $G=w^{*}-\lim _{\beta} \hat{b}_{\beta}$ where $\left(a_{\alpha}\right)_{\alpha},\left(b_{\beta}\right)_{\beta}$ are in I, then we have

$$
\begin{aligned}
D_{2}(F \cdot G)(a)= & D_{2}(F) \cdot G(a)+F \cdot D_{2}(G)(a) \\
= & D_{2}\left(i^{\prime \prime} F\right) \cdot G(a)+F \cdot D_{2}\left(i^{\prime \prime} G\right)(a) \\
= & G\left(a \cdot D_{2}\left(i^{\prime \prime} F\right)\right)+F\left(D_{2}\left(i^{\prime \prime} G\right) \cdot a\right) \\
= & \lim _{\beta} \hat{b}_{\beta}\left(a \cdot D_{2}\left(i^{\prime \prime} F\right)\right)+\lim _{\alpha} \hat{a}_{\alpha}\left(D_{2}\left(i^{\prime \prime} G\right) \cdot a\right) \\
= & \lim _{\beta} D_{2}\left(i^{\prime \prime} F\right)\left(b_{\beta} \cdot a\right)+\lim _{\alpha} D_{2}\left(i^{\prime \prime} G\right)\left(a \cdot a_{\alpha}\right) \\
= & \lim _{\beta} D_{1} F\left(b_{\beta} \cdot a\right)+\lim _{\alpha} D_{1} G\left(a \cdot a_{\alpha}\right) \\
& -\lim _{\beta} \delta_{\lambda_{0}} F\left(b_{\beta} \cdot a\right)-\lim _{\alpha} \delta_{\lambda_{0}} G\left(a \cdot a_{\alpha}\right)=0 .
\end{aligned}
$$

This means that $\left.D_{2}\right|_{I^{\prime \prime 2}}=0$ and it follows from $\overline{I^{\prime 2}}=I^{\prime \prime}$ that $\left.D_{2}\right|_{I^{\prime \prime}}=0$. Now, we define

$$
\begin{aligned}
& \tilde{D}: A^{\prime \prime} / I^{\prime \prime} \longrightarrow I^{0} \\
& \tilde{D}\left(F+I^{\prime \prime}\right)(a)=D_{2}(F)(a) \quad\left(F \in A^{\prime \prime}, a \in A\right)
\end{aligned}
$$

Note that \tilde{D} is well-defined since $\left.D_{2}\right|_{I^{\prime \prime}}=0$ and $\tilde{D} \in Z^{1}\left(A^{\prime \prime} / I^{\prime \prime}, I^{0}\right)$. On the other hand, $A^{\prime \prime} / I^{\prime \prime}$ is (-1)-weakly amenable then there exists $f_{0} \in I^{0}$ such that $\tilde{D}\left(F+I^{\prime \prime}\right)=\delta_{f_{0}}\left(F+I^{\prime \prime}\right)$. Let $x \in A$ and $G \in I^{\prime \prime}$ with $G=w^{*}-\lim _{\alpha} \hat{b}_{\alpha}$. Then we have

$$
f_{0} \cdot G(x)=G\left(x \cdot f_{0}\right)=\lim _{\alpha}\left(x \cdot f_{0}\right)\left(b_{\alpha}\right)=\lim _{\alpha} f_{0}\left(b_{\alpha} \cdot x\right)=0 .
$$

It follows that $f_{0} \cdot I^{\prime \prime}=0$ and similarly $I^{\prime \prime} \cdot f_{0}=0$, so

$$
D_{2}(F)=\tilde{D}\left(F+I^{\prime \prime}\right)=\delta_{f_{0}}\left(F+I^{\prime \prime}\right)
$$

$$
\begin{aligned}
& =\left(F+I^{\prime \prime}\right) \cdot f_{0}-f_{0} \cdot\left(F+I^{\prime \prime}\right) \\
& =F \cdot f_{0}-f_{0} \cdot F=\delta_{f_{0}}(F)
\end{aligned}
$$

This means that $D_{2}=D-\delta_{\lambda_{0}}$, then $D=\delta_{\lambda_{0}+f_{0}}$ and $A^{\prime \prime}$ is (-1)-weakly amenable.

Example 2.1. Let E be a Banach space without approximation property and $A=E \hat{\otimes} E^{\prime}$ be the nuclear algebra. Then $\mathcal{F}(E) \simeq E \hat{\otimes} E^{\prime}$, as linear spaces, where $\mathcal{F}(E)$ is the space of continuous finite-rank operators on E. Let $\mathcal{N}(E)$ be the space of nuclear operators with the nuclear norm $\|\cdot\|_{v}$, then by using 2.5.3 (iii) of [2], the identification of $E \hat{\otimes} E^{\prime}$ with $\mathcal{F}(E)$ extends to an epimorphism

$$
R: E \hat{\otimes} E^{\prime} \longrightarrow \mathcal{N}(E)
$$

with $I=\operatorname{ker} R$, and $I=\{0\}$ if and only if E has approximation property. Moreover, if $\operatorname{dim} I \geq 2$, then I has not trace extension property and by previous theorem $A^{\prime \prime} / I^{\prime \prime}$ is not (-1)-weakly amenable. For more details, definitions and some theorems which are used in this example, see 2.5.3 and 2.5.4 of [2].

Example 2.2. Let $\mathbb{N}^{<w}=\bigcup_{k \in \mathbb{N}} \mathbb{N}^{k}$ and P be the set of elements $p=$ $\left(p_{1}, \ldots, p_{k}\right)$ of $\mathbb{N}^{<w}$ such that $k \geq 2$ and $p_{1}<p_{2}<\cdots<p_{k}$. For a sequence $\alpha \in \mathbb{C}^{\mathbb{N}}$, define $N(\alpha, p)$ for $p \in P$ by

$$
2 N(\alpha, p)^{2}=\left(\sum_{j=1}^{k-1}\left|\alpha_{p_{j+1}}-\alpha_{p_{j}}\right|^{2}\right)+\left|\alpha_{p_{k}}-\alpha_{p_{1}}\right|^{2}
$$

set $N(\alpha)=\sup _{p \in P} N(\alpha, p)$ so, $N(\alpha) \in[0,+\infty]$. We define

$$
\mathcal{J}=\left\{\alpha \in C_{0}: N(\alpha)<\infty\right\}
$$

where $C_{0}=\left\{\alpha \in \mathbb{C}^{\mathbb{N}}: \lim _{n \rightarrow \infty} \alpha_{n}=0\right\}$. \mathcal{J} is a commutative closed subalgebra of l^{∞}, and is called the James algebra. By 4.1.45 of [2], we have some properties for \mathcal{J} such as:

1) \mathcal{J} is an ideal in $\mathcal{J}^{\prime \prime}$,
2) \mathcal{J} is Arens regular,
3) $\mathcal{J}^{\prime \prime}=\mathcal{M}(\mathcal{J}) \quad$ (isometrically isomorphic)
where $\mathcal{M}(\mathcal{J})$ is the set of all multiplicative functionals on \mathcal{J},
4) \mathcal{J} has a bounded approximate identity,
5) \mathcal{J} is weakly amenable,
6) \mathcal{J} is not amenable.

By using Lemma 3.1, \mathcal{J}^{\prime} is a Banach $\mathcal{J}^{\prime \prime}$-bimodule. Since \mathcal{J} has a bounded approximate identity, then \mathcal{J} is essential and by using 2.9.54 of [2], we have

$$
H^{1}\left(\mathcal{J}, \mathcal{J}^{\prime}\right)=H^{1}\left(\mathcal{M}(\mathcal{J}), \mathcal{J}^{\prime}\right)
$$

Now (3), (5) imply that $\mathcal{J}^{\prime \prime}$ is (-1)-weakly amenable.
THEOREM 2.2. Let $\frac{1}{2}<\alpha<1$ and let \mathbb{T} be the unit circle. If $A=$ lip \mathbb{T}, then $A^{\prime \prime}=L_{\text {Lip }} \mathbb{T}$ is not (-1)-weakly amenable.

Proof. Define $D: \operatorname{Lip}_{\alpha} \mathbb{T} \longrightarrow\left(\text { lip }_{\alpha} \mathbb{T}\right)^{\prime}$ by

$$
D(F)(h)=\sum_{k=-\infty}^{+\infty} k \hat{h}(k) \hat{F}(-k)
$$

for all $F \in \operatorname{Lip}_{\alpha} \mathbb{T}$ and all $h \in \operatorname{lip} p_{\alpha} \mathbb{T}$, where $\hat{h}(k)$ and $\hat{F}(k)$ are the Fourier coefficients of h and F at k, that is

$$
\hat{f}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i k \theta} \mathrm{~d} \theta
$$

First, we check that D is well-defined. It follows from 4.5.14 of [2] that there is constant $C_{\alpha}>0$ such that for each $F \in \operatorname{Lip}_{\alpha} \mathbb{T}$

$$
\left(\sum_{k=-\infty}^{+\infty}|k||\hat{F}(k)|^{2}\right)^{\frac{1}{2}} \leq C_{\alpha}\|F\|_{\alpha}
$$

so, we have
$\sum_{k=-\infty}^{+\infty}|k \hat{h}(k) \hat{F}(-k)| \leq\left(\sum_{k=-\infty}^{+\infty}|k||\hat{h}(k)|^{2}\right)^{\frac{1}{2}}\left(\sum_{k=-\infty}^{+\infty}|k||\hat{F}(-k)|^{2}\right)^{\frac{1}{2}} \leq C_{\alpha}^{2}\|h\|_{\alpha}\|F\|_{\alpha}$.
Then, $|D F(h)| \leq C_{\alpha}^{2}\|h\|_{\alpha}\|F\|_{\alpha}$ and so, $D F \in\left(l i p_{\alpha} \mathbb{T}\right)^{\prime}$ and D is a bounded linear operator. Let $F, G \in \operatorname{Lip}_{\alpha} \mathbb{T}$ and $h \in \operatorname{lip}_{\alpha} \mathbb{T}$, by 4.4.26 (i), (ii) of [2], $\operatorname{lin}\left\{\varepsilon_{x}: x \in \mathbb{T}\right\}$ is dense in $\left(\operatorname{lip} \mathbb{p}_{\alpha}\right)^{\prime}$, where $\varepsilon_{x} f=f x$, for each f in $\operatorname{lip} p_{\alpha} \mathbb{T}$. So, there are sequences $\left(x_{n}\right) \subseteq \mathbb{T}$ and $\left(t_{n}\right) \subseteq \mathbb{C}$ such that $D(F)=\sum_{n=1}^{\infty} t_{n} \varepsilon_{x_{n}}$. Note that $D F(h)=\sum_{n=1}^{\infty} t_{n} f\left(x_{n}\right)$, for $f \in l i p_{\alpha} \mathbb{T}$. We can extend $D F$ to $L i p_{\alpha} \mathbb{T}$, say $\tilde{D} F$. (This is valid since the Bernstein inequality in 4.5 .14 of [2] is valid for all f in $\operatorname{Lip}_{\alpha} \mathbb{T}$). For each $l \in \operatorname{lip} p_{\alpha} \mathbb{T}$, we have
$h \cdot D F(l)=D F(l \cdot h)=\sum_{n=1}^{\infty} t_{n} h\left(x_{n}\right)=\sum_{n=1}^{\infty} t_{n} h\left(x_{n}\right) \varepsilon_{x_{n}}(l)=\left(\sum_{n=1}^{\infty} t_{n} h\left(x_{n}\right) \varepsilon_{x_{n}}\right)(l)$.

The last equation is valid since $\left\|x_{n}\right\|=1(n \in \mathbb{N})$ and

$$
\sum_{n=1}^{\infty}\left\|t_{n} h\left(x_{n}\right) \varepsilon_{x_{n}}\right\| \leq \sum_{n=1}^{\infty}\left\|t_{n} \varepsilon_{x_{n}}\right\|\|h\|\left\|x_{n}\right\|=\|h\| \sum_{n=1}^{\infty}\left\|t_{n} \varepsilon_{x_{n}}\right\|<\infty
$$

Hence, we have $h \cdot D F=\sum_{n=1}^{\infty} t_{n} h\left(x_{n}\right) \varepsilon_{x_{n}}$. On the other hand, $\left(l i p_{\alpha} \mathbb{T}\right)^{\prime \prime}$ is isometrically isomorphic to $\operatorname{Lip}_{\alpha} \mathbb{T}$, by $\tau(F)(x)=F\left(\varepsilon_{x}\right)$ for $x \in \mathbb{T}$ and $F \in$ $L^{\operatorname{Lip}} \mathbb{T}$. So, for $G \in \operatorname{Lip}_{\alpha} \mathbb{T}$ there exists a $\Phi_{G} \in\left(\operatorname{lip}_{\alpha} \mathbb{T}\right)^{\prime \prime}$ such that $\Phi_{G}\left(\varepsilon_{x}\right)=$ $G(x)$, then by the continuity of Φ_{G}, we have

$$
\begin{aligned}
D F \cdot G(h) & =\Phi_{G}\left(\sum_{n=1}^{\infty} t_{n} h\left(x_{n}\right) \varepsilon_{x_{n}}\right) \\
& =\sum_{n=1}^{\infty} t_{n} h\left(x_{n}\right) \Phi_{G}\left(\varepsilon_{x_{n}}\right)=\sum_{n=1}^{\infty} t_{n} h\left(x_{n}\right) G\left(x_{n}\right) \\
& =\sum_{n=1}^{\infty} t_{n} \varepsilon_{x_{n}}(h \cdot G)=\tilde{D} F(h \cdot G) .
\end{aligned}
$$

Similarly, $F \cdot D G(h)=\tilde{D} G(h \cdot F)$. Let $F, G \in \operatorname{Lip}_{\alpha} \mathbb{T}$ then $\hat{F}, \hat{G} \in L^{2}(\mathbb{T})$ and $\widehat{F \cdot G}=\hat{F} * \hat{G}$ where $*$ is convolution product with

$$
\hat{F} * \hat{G}(k)=\sum_{j=-\infty}^{+\infty} \hat{F}(j) \hat{G}(k-j)
$$

Then, we have

$$
\begin{aligned}
D(F \cdot G)(h) & =\sum_{k=-\infty}^{+\infty} k \hat{h}(k) \widehat{F \cdot G}(-k)=\sum_{k=-\infty}^{+\infty} k \hat{h}(k)\left(\sum_{j=-\infty}^{+\infty} \hat{F}(j) \hat{G}(-k-j)\right) \\
& =\sum_{k=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} k \hat{h}(k) \hat{F}(j) \hat{G}(-k-j) \\
& =\sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} k \hat{h}(k) \hat{F}(j) \hat{G}(-k-j) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\tilde{D} F(h \cdot G) & =\sum_{k=-\infty}^{+\infty} k \hat{F}(-k) \widehat{h \cdot G}(k)=\sum_{k=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} k \hat{F}(-k) \hat{h}(j) \hat{G}(k-j) \\
& =\sum_{k=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} k \hat{F}(-k) \hat{h}(k-j) \hat{G}(j)=\sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} k \hat{F}(-k) \hat{h}(k-j) \hat{G}(j)
\end{aligned}
$$

$$
=\sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty}(k+j) \hat{F}(-k-j) \hat{h}(k) \hat{G}(j)
$$

and we have

$$
\begin{aligned}
\tilde{D}(G)(h \cdot F) & =\sum_{j=-\infty}^{+\infty} j \widehat{G}(-j) \widehat{h \cdot F}(j)=\sum_{j=-\infty}^{+\infty}(-j) \hat{G}(j) \widehat{h \cdot F}(-j) \\
& =\sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty}(-j) \hat{G}(j) \hat{h}(k) \hat{F}(-j-k)
\end{aligned}
$$

Now, by the definition of $\tilde{D} F$, we have

$$
D F \cdot G(h)+F \cdot D G(h)=\tilde{D} F(G \cdot h)+\tilde{D} G(h \cdot F)=D(F \cdot G)(h)
$$

it follows that D is a derivation. We have $|D F(h)| \leq C_{\alpha}^{2}\|h\|_{\alpha}\|F\|_{\alpha}$, then D is a nonzero bounded derivation in $Z^{1}\left(\operatorname{Lip}_{\alpha} \mathbb{T}\right.$, $\left.\left(\operatorname{lip}_{\alpha} \mathbb{T}\right)^{\prime}\right)$. On the other hand, $\operatorname{Lip} p_{\alpha} \mathbb{T}$ is commutative then we have $H^{1}\left(\operatorname{Lip}_{\alpha} \mathbb{T},\left(\operatorname{lip}_{\alpha} \mathbb{T}\right)^{\prime}\right) \neq\{0\}$. It follows that $\operatorname{Lip}_{\alpha} \mathbb{T}$ is not (-1)-weakly amenable.

REFERENCES

[1] W.G. Bade, P.C. Curtis and H.G. Dales, Amenability and weak amenability for Beurling and Lipschits algebra. Proc. Lond. Math. Soc. (3) 55 (1987), 359-377.
[2] H.G. Dales, Banach Algebra and Automatic Continuity. Oxford University Press, 2000.
[3] J. Duncan and S.A. Hosseiniun, The second dual of banach algebra. Proc. Roy. Soc. Edinburgh Sect. A. 84 (1979), 309-325.
[4] S.A.R Hosseiniun and A. Valadkhani, (-1)-weak amenability of the second dual of Banach algebras. Submitted.
[5] B.E. Johnson, Cohomology in Banach algebras. Mem. Amer. Math. Soc. 127 (1972).
[6] B.E. Johnson, Weak amenability of group algebras. Bull. Lond. Math. Soc. 23 (1991), 281-284.
[7] A. Medghalchi and T. Yazdanpanah, Problems concerning n-weak amenability of Banach algebras. Czechoslovak Math. J. 55 (2005), 4, 863-876.

Received 18 Sptember 2011
Semnan University, Department of Mathematics, P.O. Box 35195-363, Semnan, Iran madjid.eshaghi@gmail.com

University of Arkansas, "J. William Fulbright" College of Arts and Sciences Department of Mathematical Sciences, Fayeteville, AR 72701, USA shossein@uark.edu

University of Shahid Beheshti, Department of Mathematics, Teheran, Iran
arezou.valadkhani@yahoo.com

