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Chebyshev's algebraic inequality, also known as the covariance inequa-
lity, is an important tool in economics, �nance, and decision making. The
covariance of two functions f, g ∈ L2 ([a, b]) is de�ned by

cov(f, g) = E ((f − E(f))(g − E(g))) = E (fg)− E(f)E(g)),

where E(f) = 1
b−a

∫ b
a f(x)dx represents the expectation of f. Chebyshev's in-

equality states that cov(f, g) ≥ 0 if f and g are monotonic in the same direction
and cov(f, g) ≤ 0 if f and g are monotonic of opposite direction.

Most of the existing literature concerning this inequality is reviewed in the
excellent monograph of Mitrinovi¢, Pe£ari¢ and Fink [2]. Recently, Niculescu
and Pe£ari¢ [3] have shown the (logical) equivalence of Chebyshev's algebraic
inequality with another classical result, Jensen's inequality.

As was noticed by K.A. Andréief in 1883 (see [2], p. 243), Chebyshev's
inequality is a direct consequence of the identity

1
b− a

∫ b

a
f(x)g(x)dx =

(
1

b− a

∫ b

a
f(x)dx

)(
1

b− a

∫ b

a
g(x)dx

)
+

+
1

2 (b− a)2

∫ b

a

∫ b

a
(f(x)− f(y)) (g(x)− g(y)) dxdy.
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This also shows that monotonicity in the same direction of the given pair
of functions can be weakened by assuming only their synchronicity, that is,

(f(x)− f(y)) (g(x)− g(y)) ≥ 0 for a.e. x, y ∈ [a, b].

Here, as usually, a.e. stands for almost everywhere.
The aim of the present paper is to show that Chebyshev's inequality still

works when synchronicity of the given pair of functions is replaced by the
synchronicity of the functions corrected by their averages.

Given a real-valued function h belonging to the Lebesgue space L1([a, b]),
its average, M(h), is de�ned by the formula

M(h)(x) =
1

x− a

∫ x

a
h(t)dt, for x ∈ (a, b].

Clearly, if h is monotone, then M(h) is also monotone (in the same
direction). However, if h is not monotone, then the intervals of monotonicity
of h and its average could be di�erent. For example, the function x+

√
2 sinx is

increasing on the interval [0, 3π
4 ] and decreasing on the interval [3π

4 , 5π
4 ], while

its average, x
2 +

√
2(1−cos x)

x , is increasing on (0,∞). The same phenomenon
occurs for the family of oscillating functions xα(k + sinx), for α > 0 and
k ≥ α+2

α .
Our extension of Chebyshev's inequality is as follows:

Theorem 1. Suppose that f and g are two real-valued functions belonging

to L∞ ([a, b]). If

(S)

(
f(x)− 1

x− a

∫ x

a
f(t)dt

)(
g(x)− 1

x− a

∫ x

a
g(t)dt

)
≥ 0,

for a.e. x ∈ [a, b], then

(C)
1

b− a

∫ b

a
f(x)g(x)dx ≥

(
1

b− a

∫ b

a
f(x)dx

)(
1

b− a

∫ b

a
g(x)dx

)
.

The condition (S) is ful�lled when the averages of f and g are both
nondecreasing or both nonincreasing a.e. on (a, b]. Indeed, according to the
Lebesgue di�erentiation theorem,

d
dx

(
1

x− a

∫ x

a
h(t)dt

)
=

(x− a)h(x)−
∫ x
a h(t)dt

(x− a)2
,

and the derivative of a monotone function is either almost everywhere ≥ 0, or
almost everywhere ≤ 0. See [1], Theorem 18.3, p. 275.

When the averages have opposite monotonicity, then the inequality (C)
works in the reverse way.
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Theorem 1 allows us to motivate many curious inequalities. For exam-
ple, according to the above discussion, the following inequality holds true for
every a ≥ 0, ∫ a

0
t
(
t +

√
2 sin t

)
dt ≥ a

2

∫ a

0

(
t +

√
2 sin t

)
dt,

that is,
1
12

a3 − a
√

2 cos2
a

2
+
√

2 sin a ≥ 0 for a ≥ 0.

The proof of Theorem 1 follows immediately from the case x = b of an
identity involving averages:

Lemma 1. If f and g are two functions as in the hypotheses of Theorem 1,
then for every x ∈ (a, b],

1
x− a

∫ x

a
f(t)g(t)dt =

(
1

x− a

∫ x

a
f(s)ds

)(
1

x− a

∫ x

a
g(s)ds

)
+

+
1

x− a

∫ x

a

(
f(t)− 1

t− a

∫ t

a
f(s)ds

)(
g(t)− 1

t− a

∫ t

a
g(s)ds

)
dt,

that is,

(A) M(fg) =M(f)M(g) +M ((f −M(f)) (g −M(g))) .

Proof. The special case where f and g are both continuously di�eren-
tiable, is simply a consequence of the repeated application of the method of
integration by parts∫ x

a
f(t)g(t)dt = f(t)

∫ t

a
g(s)ds

∣∣∣∣t=x

t=a

−
∫ x

a
f ′(t)

(∫ t

a
g(s)ds

)
dt =

= f(x)
∫ x

a
g(s)ds−

∫ x

a
(t− a)f ′(t)

(
1

t− a

∫ t

a
g(s)ds

)
dt =

= f(x)
∫ x

a
g(s)ds−

(
1

x− a

∫ x

a
g(s)ds

)(
(x− a)f(x)−

∫ x

a
f(s)ds

)
+

+
∫ x

a

1
(t− a)2

(
(t− a)f(t)−

∫ t

a
f(s)ds

)(
(t− a)g(t)−

∫ t

a
g(s)ds

)
dt =

=
(

1
x− a

∫ x

a
g(s)ds

)(∫ x

a
f(s)ds

)
+

+
∫ x

a

1
(t− a)2

(
(t− a)f(t)−

∫ t

a
f(s)ds

)(
(t− a)g(t)−

∫ t

a
g(s)ds

)
dt.

The general case is covered by the theory of absolutely continuous functions.
They are precisely the functions h : [a, b] → R that admit representations of
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the form

h(x) = h(a) +
∫ x

a
ϕ(t)dt, x ∈ [a, b],

with g a suitable Lebesgue integrable function on [a, b]. Necessarily, h′ exists
almost everywhere and h′ = ϕ in L1 ([a, b]). See [1], Theorem 18.17, page 286.

The identity (A) can be obtained from the formula of integration by parts
for absolutely continuous functions as follows∫ x

a
f(t)

(
1

t− a

∫ t

a
g(s)ds

)
dt =

∫ x

a

(
d

dt

∫ t

a
f(s)ds

)(
1

t− a

∫ t

a
g(s)ds

)
dt =

=
∫ x

a

(∫ t

a
f(s)ds

)(
1

t− a

∫ t

a
g(s)ds

)
dt+

+
∫ x

a

(
1

t− a

∫ t

a
f(s)ds

)(
1

t− a

∫ t

a
g(s)ds

)
dt−

−
∫ x

a
g(t)

(
1

t− a

∫ t

a
f(s)ds

)
dt. �

Lemma 1 easily yields the identity

M(fgh) =M(f)M(g)M(h) +M ((f −M(f)) (g −M(g)))M (h−M(h)) ,

for triplets f, g, h in L∞([a, b]). This can be extended by mathematical in-
duction to all �nite families of functions belonging to L∞([a, b]), and implies
a suitable extension of Theorem 1 for n-tuples of functions verifying the n-
analogue of the condition (S).

Theorem 1 can be extended (mutatis mutandis) to weighted measures of
the form p(t)dt (for p a positive continuous function), by replacing the averages
M(h) by the averages Mp(t)dt(h), de�ned by the formula

Mp(t)dt(h)(x) =
∫ x

a
h(t)p(t)dt

/∫ x

a
p(t)dt, for x ∈ (a, b].

The discrete analogue of this extension also works.

Theorem 2. If (wk)n
k=1 is a family of positive numbers and (xk)n

k=1 and

(yk)n
k=1 are two sequences of real numbers such that their averages

x1,
w1x1 + w2x2

w1 + w2
, . . . ,

w1x1 + w2x2 + · · ·+ wnxn

w1 + w2 + · · ·+ wn
,

and

y1,
w1y1 + w2y2

w1 + w2
, . . . ,

w1y1 + w2y2 + · · ·+ wnyn

w1 + w2 + · · ·+ wn
,
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are synchronous (for example, if both are monotone, in the same direction),
then (

n∑
k=1

wk

)(
n∑

k=1

wkxkyk

)
≥

(
n∑

k=1

wkxk

)(
n∑

k=1

wkyk

)
.

As an immediate consequence we obtain the following generalization of
the key result used by Simonovits [6] in his approach of the ranking the social
assurance systems:

Corollary 1. Let (αk)1≤k≤n, (uk)1≤k≤n be two positive sequences and

(βk)1≤k≤n, (vk)1≤k≤n be two nonnegative sequences. If the weighted averages

of
(

βk
αk

)
1≤k≤n

and
(

vk
uk

)
1≤k≤n

(with weights wk = αkuk) are both monotone in

the same direction, then
n∑

k=1

αkvk

n∑
k=1

αkuk

≤

n∑
k=1

βkvk

n∑
k=1

βkuk

.

The proof follows from Theorem 2 applied to xk = βk/αk, yk = vk/uk

and wk = αkuk. �
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