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1. INTRODUCTION

There are investigated two problems relying on SDEs with jumps while
impossing a mutually commuting condition for the vector fields {f1, f2, g} ⊆
⊆

(
Cb ∩ C1

b ∩ C2
)
(Rn; Rn) driving the motion. It implies a useful integral

representation for any solution of the SDE under consideration. In addition,
a fundamental system of stochastic first integrals can be constructed provided
the conditions of the contraction mapping theorem are satisfied.

A solution of Problem (I) containing the above mentioned subjects is
given in Theorem 1 of Section 3.

The solution of Problem (I) is used to associate a non-Markovian SDE
and functionals with jumps for which a filtering Problem (II) is solved in
Theorem 2 of Section 3.

Section 2 of this paper is dedicated to some preliminaries including an
application of Banach fixed point theorem for solving integral stochastic equ-
ations with jumps.

The main results (see Theorems 1 and 2) either associate the evolution
of some pathwise functionals with nonlinear SPDEs of parabolic type or in-
troduce appropriate parameterized backward parabolic equations.
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The general method used here relies on piecewise smooth test functions
constructed as fundamental solutions for some quasilinear (Hamilton-Jacobi)
equations with jumps. Then, a solution of Problem (I) is defined combining the
piecewise smooth test functions with a continuous solution of the diffusion part
of the SDE under consideration. This method has much in common with the
results contained in [1] where SDEs and SPDEs with continuous trajectories
are studied. The results given in [2] use a different approach. Some roots
of this paper are contained in the reference [3] and a more general situation
including several diffusion vector fields in involution might be consistent with
the problems analyzed here.

2. PRELIMINARIES AND FORMULATION OF PROBLEMS

Consider two independent processes {(w(t), y(t)) : t ∈ [0, T ]} on the fil-
tered complete probability space

{
Ω,F ⊇

{
F t

}
, P

}
(see Ω = Ω1 × Ω2, F =

F1 × F2, F t = F t
1 × F2, P = P1 ⊗ P2), where {w(t) ∈ R : t ∈ [0, T ]} is a

Brownian motion over
{
Ω1,F1 ⊇

{
F t

1

}
, P1

}
and

{y(t) ∈ [−γ, γ] : t ∈ [0, T ], y(0) = 0}

is a piecewise constant process defined on the probability space {Ω2,F2, P2}.
The piecewise constant process {y(t)} satisfies

y (t, ω2) = y (θi (ω2) , ω2)
not= yi (ω2) , t ∈ [θi (ω2) , θi+1 (ω2)) ,

where 0 = θ0 (ω2) < θ1 (ω2) < · · · < θN−1 (ω2) < θN (ω2) = T is a parti-
tion such that yi (ω2) : Ω2 → R is a F2-measurable random variable for any
i ∈ {0, 1, . . . , N − 1}. There are given the smooth vector fields {g, f1, f2} ⊆
⊆

(
Cb ∩ C1

b ∩ C2
)
(Rn; Rn) and two scalar functions {ϕ1, ϕ2}⊆

(
C1
b ∩ C2

)
(Rn)

such that

{g, f1, f2} mutually commute w.r.t. the Lie bracket,(1)

(γ + T )V K = ρ ∈ [0, 1), where {|y(t)| ≤ γ : t ∈ [0, T ]} ,(2)

and

V = sup {|∂xϕ1(x)| , |∂xϕ2(x)| : x ∈ Rn} ,
K = sup {|f1(x)| , |f2(x)| : x ∈ Rn} .
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Let {x̂ϕ(t;λ) : t ∈ [0, T ], λ ∈ Rn} be the stochastic flow generated by the
following SDE with jumps

(3)

dtx̂ = [f1 (x̂(t−))ϕ1(λ)dt+f2 (x̂(t−))ϕ2(λ)δy(t)]+g (x̂(t−)) ◦ dw(t);

x̂(0) = λ ∈ Rn, t ∈ [0, T ], δy(t) = y(t)− y(t−), x̂(t−) = lim
s↗t

x̂(s),

where Fisk-Stratonovich integral “◦” is computed by

(4) g (x̂(t−)) ◦ dw(t) =
1
2

([∂xg] g) (x̂(t−)) dt+ g (x̂(t−)) · dw(t)

using the Itô integral “·”.
For each continuity interval t ∈ [θi, θi+1) (making an abuse, the variables

(ω1, ω2) ∈ Ω1 × Ω2 are omitted) associate the following system of nonlinear
SPDEs of parabolic type

(5)



dtψ(t, x) + [∂xψ(t, x)] f1(x)ϕ1(ψ(t, x))dt+
+ [∂xψ(t, x)] g(x)◦̂dw(t) = 0;

ψ (θi, x) = F2 [−ϕ2 (ψ (θi−, x)) δy (θi)] (ψ (θi−, x)) ,
i ∈ {0, 1, . . . , N − 1};

ψ(0, x) = x ∈ Rn.

The Fisk-Stratonovich integral “◦̂ ” in (5) is computed by

(6) h(t, x) ◦̂dw(t) = h(t, x) · dw(t)− 1
2
∂xh(t, x)g(x)dt

using the Itô integral “ · ” while F2(σ)[z], σ ∈ R, z ∈ Rn, is the global flow
generated by the complete vector field f2.

Problem (I). Under the hypotheses (1) and (2), a F t-adapted solution
λ = ψ(t, x) ∈ Rn will exist such that

(7) x̂ϕ(t;λ) = x, t ∈ [0, T ], ψ(0, x) = x ∈ Rn;

(8) {ψ(t, x) : t ∈ [θi, θi+1) , x ∈ Rn} is a continuous mapping;

(9) {ψ(t, x) : t ∈ [θi, θi+1) , x ∈ Rn} is a second order continuously

differentiable mapping w.r.t. x ∈ Rn, satisfying the nonlinear SPDE of para-
bolic type given in (5), i ∈ {0, 1, . . . , N − 1}.

Problem (II). Using the unique solution {λ = ψ(t, x)} of Problem (I),
describe the evolution of the conditioned mean values

(10) vi(t, x) = E1 {h (zψ(T ; t, x)) | ψ(t, x)} , t ∈ [θi, θi+1) , x ∈ Rn,
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for any h ∈ C2
p (Rn) and i ∈ {0, 1, 2, . . . N−1} where C2

p (Rn) consists of second
order continuously differentiable functions such that h, ∂xih, ∂

2
xixj

h satisfy a
polynomial growth condition for i, j ∈ {1, 2, . . . , n}.

Here, {zψ(s; t, x) : s ∈ [t, T ]} is the unique solution of the non-Markovian
SDE with jumps

(11)


dsz = [f1(z(s−))ϕ1 (ψ(t, x)) ds + f2(z(s−))ϕ2(ψ(t, x))δy(s)]+

+g(z(s−)) ◦ dw(s);
z(t) = x, s ∈ [t, T ].

Remark 1. Using the hypothesis (1), the unique solution {x̂ϕ(t;λ)} of
the SDE (3) can be represented as follows

(12) x̂ϕ(t;λ) = G(w(t)) ◦ F1 (τ1(t, λ)) ◦ F2 (τ2(t, λ)) [λ], t ∈ [0, T ], λ ∈ Rn,

where G(σ)[z] and Fi(σ)[z] are the global flows generated by the complete
vector fields g and fi, respectively. The following notations are used

(13) τ1(t, λ) = ϕ1(λ)t, τ2(t, λ) = ϕ2(λ)y(t)

while the integral representation (12) help us to replace x̂ϕ(t;λ) = x by other
integral equations

(14) λ = V (t, x;λ) := F (−τ(t, λ)) [G(−w(t))[x]] ,

where
F (σ1, σ2) [z] def= F1 (σ1) ◦ F2 (σ2) [z]

and
τ(t, λ) = (τ1(t, λ), τ2(t, λ)) .

By a direct computation and using the hypothesis (2), we get

(15) |∂λV (t, x;λ)| ≤ ρ ∈ [0, 1), for any x, λ ∈ Rn, t ∈ [0, T ],

which allows us to use the Banach fixed point theorem for solving the integral
equations (14).

In this respect, the unique solution of (14) will be found as a composition

(16) ψ(t, x) = ψ̂ (t, ẑ(t, x)) ,

where ẑ(t, x) def= G(−w(t))[x], t ∈ [0, T ], x ∈ Rn, is a continuous and F t
1-

adapted process.
On the other hand, for each z ∈ Rn, the piecewise smooth and F2-

measurable process
{
ψ̂(t, z) ∈ Rn : t ∈ [0, T ]

}
is found as the unique solution

of the following integral equations with jumps

(17) λ = V̂ (t, z;λ) := F (−τ(t, λ))[z], t ∈ [0, T ], z ∈ Rn.
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Here τ(t, λ) = (τ1(t, λ), τ2(t, λ)) and F (σ1, σ2) [z] are defined in (14).

Lemma 1. Under the hypotheses (1) and (2), there exists a unique so-
lution

{
λ = ψ̂(t, z) ∈ Rn : t ∈ [0, T ], z ∈ Rn

}
of (17), which is second order

continuously differentiable w.r.t. z ∈ Rn. In adition, the following integral
equations with jumps are valid

(18)


ψ̂(t, z) = V̂

(
t, z; ψ̂(t−, z)

)
, t ∈ [0, T ], ψ̂(0, z) = z ∈ Rn;

ψ̂(θi, z)= V̂
(
θi, z; ψ̂ (θi−, z)

)
=

= F2

[
−ϕ2

(
ψ̂(θi−, z)

)
δy(θi)

] (
ψ̂ (θi−, z)

)
,

where
{
λ = ψ̂ (θi−, z)

}
is the unique solution of the integral equations

λ = V̂ (θi−, z;λ), i ∈ {0, 1, . . . , N − 1}.

Proof. The unique solution
{
λ = ψ̂ (t, z)

}
satisfying (18) is found as

a limit of the standard approximating sequence {λk(t, z)}k≥0 constructed as
follows. Define

(19) λ0(t, z)=z, λk+1(t, z)= V̂ (t, z;λk (t−, z)) , k ≥ 0, t ∈ [0, T ], z ∈ Rn.

Using the hypothesis (2), we get that {λk(t, z)}k≥0 is a Cauchy sequence
satisfying

(20)

 |λk+1(t, z)− λk(t, z)| ≤ ρk · |λ1(t−, z)− λ0(t−, z)| ;

ψ̂(t, z) = lim
k→∞

λk(t, z), ψ̂(t−, z) = lim
k→∞

λk(t−, z),

for any k ≥ 0, t ∈ [0, T ], and z ∈ Rn.
In addition, a direct computation leads us to

(21)



λ1(t−, z)= V̂ (t−, z; z) =

= z −
2∑
i=1

∫ 1

0
fi (F (−θτ(t−; z)) [z]) · τi(t−; z)dθ;

|λ1(t−, z)− λ0(t−, z)|=
∣∣V̂ (t−, z; z)− z

∣∣ ≤
≤ R(γ, T, z), t ∈ [0, T ], z ∈ Rn,

where R(γ, T, z) = [T |ϕ1(z)|+ γ |ϕ2(z)|] ·K.
Combining (20) and (21), we get the estimate

(22)
∣∣ψ̂(t, z)− z

∣∣ ≤ 1
1− ρ

R(γ, T, z), t ∈ [0, T ], z ∈ Rn,

and by passing k → ∞, from (19), we get that the integral equations (18)
hold true.

The proof is complete. �
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As a direct consequence of Lemma 1, we obtain

Lemma 2. Under the hypotheses (1) and (2), consider the unique so-
lution {λ = ψ̂(t, z) ∈ Rn : t ∈ [0, T ], z ∈ Rn} satisfying integral equations
(18). Then, {ψ̂(t, z) ∈ Rn : t ∈ [θi, θi+1), z ∈ Rn} is a continuously differen-
tiable mapping w.r.t. z ∈ Rn (second order) and respectively, t ∈ [θi, θi+1)
(first order). In addition, the following quasilinear (Hamilton-Jacobi) equations
with jumps hold true

(23)


∂tψ̂(t, z) +

[
∂zψ̂(t, z)f1(z)

]
ϕ1

(
ψ̂(t, z)

)
= 0, t ∈ [θi, θi+1) ;

ψ̂(θi, z) = F2

[
−ϕ2

(
ψ̂(θi−, z)

)
δy(θi)

] (
ψ̂ (θi−, z)

)
;

ψ̂(0, z) = z ∈ Rn, i ∈ {0, 1, . . . , N − 1}.

Remark 2. Under the hypotheses (1) and (2), a solution for Problem (I)
will be

(24) ψ(t, x) = ψ̂ (t, ẑ(t, x)) , t ∈ [θi, θi+1) , x ∈ Rn, i ∈ {0, 1, . . . , N − 1},

where
{
ψ̂(t, z)

}
is defined in Lemma 2, and the continuous and F t

1-adapted
process {ẑ(t, x)} is given by

(25) ẑ(t, x) def= G(−w(t))[x] not= H(w(t))[x], t ∈ [0, T ], x ∈ Rn.

An application of the standard rule of stochastic derivation leads us to
the following SDE

(26) dtẑ(t, x)=∂σ {H(σ)[x]} (σ=w(t)) · dw(t) +
1
2
∂2
σ {H(σ)[x]} (σ=w(t))dt,

for any t ∈ [0, T ], x ∈ Rn.
On the other hand, using the identities H(σ) ◦ G(σ)[λ] = λ ∈ Rn and

λ = H(σ)[x](x = G(σ)[λ]), we get

(27)


∂σH(σ)[x] = −∂x {H(σ)[x]} · g(x), σ ∈ R, x ∈ Rn;
∂2
σ {H(σ)[x]}= ∂σ {∂σ {H(σ)[x]}} = ∂σ {−∂x {H(σ)[x]} · g(x)} =

= ∂x {∂x {H(σ)[x]} · g(x)} · g(x), σ ∈ R, x ∈ Rn.

Combining (26) and (27), we are led to the SPDE of parabolic type
satisfied by the continuous process {ẑ(t, x)} as follows

Lemma 3. Assume g ∈
(
Cb ∩ C1

b ∩ C2
)
(Rn; Rn) and define the conti-

nuous process ẑ(t, x) = G (−w(t)) [x] not= H(w(t))[x], t ∈ [0, T ], x ∈ Rn (see
(25)). Then, the following SPDE of parabolic type hold true

(28)
{

dtẑ(t, x) + [∂xẑ(t, x) · g(x)] ◦̂dw(t) = 0, t ∈ [0, T ], x ∈ Rn;
ẑ(0, x) = x,
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where the Fisk-Stratanovich integral “ ◦̂ ” is computed by the formula in (6).

The evolution of ψ(t, x) def= ψ̂ (t, ẑ(t, x)), t ∈ [0, T ] will be described in

Lemma 4. Under the hypotheses (1) and (2), consider the piecewise con-
tinuous and F t-adapted process

(29)
{
ψ(t, x) def= ψ̂ (t, ẑ(t, x)) : t ∈ [0, T ], x ∈ Rn

}
,

where {ψ̂(t, z)} is constructed in Lemma 2 and {ẑ(t, x)} is described in Lem-
ma 3.

Then, the following nonlinear system of SPDEs hold true

(30)


dtψ(t, x)+∂zψ̂ (t, ẑ(t, x)) f1 (ẑ(t, x))ϕ1 (ψ(t, x)) dt+

+ [∂xψ(t, x) · g(x)] ◦̂dw(t) = 0, t ∈ [θi, θi+1) ;

ψ (θi, x) = ψ̂ (θi, ẑ (θi, x))=F2 [−ϕ2 (ψ (θi−, x)) δy (θi)] (ψ (θi−, x)) ;
ψ(0, x) = x ∈ Rn, i ∈ {1, 2, . . . , N − 1},

where the Fisk-Stratanovich integral “ ◦̂ ” is computed by the formula in (6).

3. MAIN RESULTS
(SOLUTIONS FOR PROBLEMS (I) AND (II))

With the same notations of Section 2, a complete description of the
piecewise continuous process ψ(t, x) def= ψ̂ (t, ẑ(t, x)), t ∈ [0, T ], x ∈ Rn (see
Lemma 4) will be given similarly as in SPDE’s formula (5) mentioned in
Problem (I).

Theorem 1 (solution for Problem (I)). Under the hypotheses (1) and (2),
consider the piecewise continuous and F t = F t

1×F2-adapted process ψ(t, x) =
ψ̂ (t, ẑ(t, x)), t ∈ [0, T ], x ∈ Rn, defined in Lemma 4. Then, the nonlinear
system of SPDEs given in (30) is equivalent with the system of SPDEs of
parabolic type defined in (5) of Problem (I).

Proof. By hypothesis, the conclusions of Lemma 4 are valid and the
nonlinear system (30) can be replaced by (5) of Problem (I) provided the fol-
lowing computation is performed. Notice that the middle term of (30) must be
rewritten as in (5) and using the hypothesis (1), we get the following identities

(31) [∂xẑ(t, x)]
−1 f1 (ẑ(t, x)) = f1(x), t ∈ [0, T ], x ∈ Rn.

Then, rewrite the middle term of (30) as follows

(32) ∂zψ̂ (t, ẑ(t, x)) f1 (ẑ(t, x)) = ∂xψ(t, x) [∂xẑ(t, x)]
−1 f1 (ẑ(t, x))
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and (31) leads us to

(33) ∂zψ̂ (t, ẑ(t, x)) f1 (ẑ(t, x)) = ∂xψ(t, x)f1(x), t ∈ [0, T ], x ∈ Rn,

which allows us to replace (30) by (5) of Problem (I).
The proof is complete. �

A solution of Problem (II) will rely on the integral representation of
solutions satisfying the SDE (10). More precisely, it holds

(34) zψ(T ; t, x) =G(w(T )− w(t)) ◦ F2 (ϕ2 (ψ(t, x)) [y(T )− y(t)]) ◦
◦F1 (ϕ1 (ψ(t, x)) (T − t)) [x],

for any 0 ≤ t < T , x ∈ Rn, where λ = ψ(t, x) ∈ Rn has been obtained in
Theorem 1.

Remark 3. Notice that zψ(T ; t, x) in (34) and any h (zψ(T ; t, x)), h ∈
∈ C2

p (Rn) are continuous mappings of the following independent random vec-
tors z1 := w(T )− w(t) (z1 is independent of F t = F t

1 × F2) and respectively,
z2 := ψ(t, x) ∈ Rn (z2 is F t-adapted). It suggests to compute the conditioned
mean values

vi(t, x) = E1 {h (zψ(T ; t, x)) | ψ(t, x)} , t ∈ [θi, θi+1) , x ∈ Rn,(35)

i ∈ {0, 1, . . . , N − 1}

(see (10) of Problem (II)), using the parameterized functional ui(t, x;λ) given by

(36) ui(t, x;λ) = E1h (zλ(T ; t, x)) , t ∈ [θi, θi+1) , x ∈ Rn, λ ∈ Rn.

Here, zλ(T ; t, x) is obtained from (34) by replacing the random vector
z2 = ψ(t, x) with λ ∈ Rn.

Using (36) we write (35) as follows

(37) vi(t, x) = ui (t, x;ψ(t, x)) , t ∈ [θi, θi+1) , x ∈ Rn, i ∈ {0, 1, . . . , N − 1}.

In addition, {ui(t, x;λ) : t ∈ [θi, θi+1) , x ∈ Rn} satisfies a backward pa-
rabolic equation (Kolmogorov equation), for each parameter λ ∈ Rn. In par-
ticular, for i = N − 1 we get

(38)

{
uN−1(T, x;λ) = h(x), x ∈ Rn;

∂tuN−1(t, x;λ) + Lλ (uN−1) (t, x;λ) = 0, t ∈ [θN−1, T ) , x ∈ Rn.

Here, the parabolic operator Lλ is defined by

Lλ(u)(x) = 〈∂xu(x), ϕ1(λ)f1(x)〉+
1
2
〈[∂x〈∂xu(x), g(x)〉] , g(x)〉.(39)
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Generally, ui(t, x;λ) satisfies a similar Kolmogorov equation

(40)

{
∂tui(t, x;λ) + Lλ(ui)(t, x;λ) = 0, t ∈ [θi, θi+1) , x ∈ Rn;

ui (θi+1−, x;λ) = E1h (zλ (T ; θi+1−, x)) ,

where zλ (T ; θi+1−, x) = F2 (δy (θi+1)ϕ2(λ)) [zλ (T ; θi+1, x)].
We conclude remarks and computations obtained above as the solution

of Problem (II).

Theorem 2 (solution of Problem (II)). Under the hypotheses (1) and (2),
consider the piecewise continuous and F t = F t

1×F2-adapted process {ψ(t, x)}
defined in Theorem 1. Associate the functionals {vi(t, x}, i ∈ {0, 1, . . . , N−1},
as in (10) (see Problem (II)). Consider the finite sequence of parameterized
backward parabolic equations and their solutions ui(t, x;λ), t ∈ [θi, θi+1), x ∈
Rn, i ∈ {0, 1, . . . , N − 1}, as in (36), (38) and (39). Then, a solution of
Problem (II) is given by (see (37))

(41) vi(t, x) = ui(t, x;ψ(t, x))), t ∈ [θi, θi+1), x ∈ Rn, i ∈ {0, 1, . . . , N − 1}.

Final Remark. The analysis given here relies on the assumption

{g, f1, f2} ⊆ Cb (Rn,Rn)

(g, f1 and f2 are bounded functions).
In the case that g ∈

(
C1
b ∩ C2

)
(Rn,Rn) and g /∈ Cb (Rn,Rn) then, an

arbitrary stopping time

τ̂ = inf{t ∈ [0, T ] : |w(t)| ≥ N}

must be introduced. The solution of Problem (I) will satisfy a nonlinear SPDE
using the arbitrary stopping time τ̂ while the Fisk-Stratonovich integral “ ◦̂ ”
in (5) must be computed as follows

h(t, x)◦̂dw(t) = χτ̂ (t)h(t, x) · dw(t)− 1
2

[χτ̂ (t)∂xh(t, x)g(x)] dt,

where χτ̂ (t) = 1, for τ̂ ≥ t, and χτ̂ (t) = 0 for τ̂ < t.
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