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In this article, we find an approximate analytical solution of the system of genera-
lized Drinfeld-Sokolov Equations (gDSE) by applying two relatively new iterative
methods, i.e., the Homotopy Perturbation Method (HPM) and Variational Itera-
tion Method (VIM). From the obtained results, we observed that both methods
are effective and quite accurate for solving system of partial differential equations.
The most attractive features of these methods lie in their simplicity and easy in
implementation. The results obtained from both methods are compared with mul-
tiple soliton-like solutions. It is observed that the computed results are in good
agreement with the published reference solutions.
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1. INTRODUCTION

In recent years, application of approximate analytical techniques to solve
both linear and nonlinear problems is the most attractive field of research in
mathematics and engineering sciences. Researchers are looking for the ap-
proximate solutions of the problems which do not have an exact solution or
it is very complicated and tedious to find their exact solution. Numerous
approximate analytical methods have been discussed in literature, some of
them being Adomian decomposition method [1], homotopy analysis method
[2], tanh-coth method [3], energy balance method [4], homotopy perturbation
method [5, 6, 7, 8], variational iteration method [9, 10, 11, 12] etc. In this arti-
cle, we implement HPM and VIM to obtain approximate analytical solution of
the generalized Drinfeld-Sokolov equations. The advantage of both the meth-
ods over other methods is in their accuracy, simplicity and easy approach to
the required solution. Recently, these methods have been successfully applied
to solve many other linear and nonlinear problems [5, 12]. The main purpose
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of this article is to provide approximate analytical solution to the following
problem

(1) φt + φxxx − 6φφx − 6 (ψα)x = 0, ψt − 2ψxxx + 6φψx = 0

with initial conditions

φ (x, 0) =
−b2 − 4k4

4k2
+ 2k2 tanh2 (kx) ,(2)

ψ (x, 0) = b tanh (kx)(3)

by using proposed methods. The multiple soliton-like solution [14] of the sys-
tem for α = 2 is given by

φ (x, t) =
−b2 − 4k4

4k2
+ 2k2 tanh2

(
kx+

3b2 + 4k4

2k
t

)
,(4)

ψ (x, t) = b tanh
(
kx+

3b+ 4k4

2k
t

)
.(5)

2. BASIC IDEA OF HOMOTOPY PERTURBATION METHOD

To explain this method, we consider the following nonlinear differential
equation

(6) A(v)− g(r) = 0, r ∈ Ω,

with the boundary conditions

(7) B

(
v,
∂v

∂n

)
= 0, r ∈ Γ,

where A is a differential operator, B is boundary operator, g(r) is known
analytic function, and Γ is the boundary of the domain Ω. Now, we can divide
A into two parts, L(v) and N(v), where L(v) is linear operator and N(v) is
nonlinear operator. Therefore, Eq. (6) can be written as

(8) L(v) +N(v)− g(r) = 0.

By using homotopy technique, we make a homotopy w(r, q) : Ω × [0, 1] → R
which satisfies

(9) H (w, q) = (1− q) [L(w)− L (vo)] + q [A(w)− g(r)] = 0, r ∈ Ω,

where q ∈ [0, 1] and is known as embedding parameter, and vo is an initial
approximation of the Eq. (6) which satisfies the initial condition. From Eq. (9),
for q = 0 and q = 1, we will have

H(w, 0) = L(w)− L(v0) = 0,(10)

H(w, 1) = A(w)− g(r) = 0.(11)
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The variation of q from zero to one is just that of w(r, q) from vo to
v(r). In topology, this is called deformation, while the terms L(w) − L(vo)
and A(w)− g(r) are called homotopy. By using HPM, the solution of Eq. (9)
can be written as a power series in q

(12) w = wo + qw1 + q2w2 + · · · .

Now, setting q → 1, Eq. (12) yields

(13) v = lim
q→1

w = wo + w1 + w2 + · · · .

The unknowns w1, w2, w3, . . . can be calculated by equating the coefficients of
like powers of q in Eq. (9).

3. BASIC IDEA OF VARIATIONAL ITERATION METHOD

This method is based on the general Lagrange multiplier method. It
was first proposed by Ji-Huan He as a modification of the general Lagrange
multiplier method used in optimization. He solved a wide class of linear and
nonlinear differential equations and found that the VIM is an effective, easy
and accurate method for finding their approximate solutions [13].

To explain this method, we consider the following general nonlinear dif-
ferential equation

(14) Lw +Nw = f(t),

where L is a linear operator, N a nonlinear operator and f(t) is the homoge-
neous term. According to the VIM procedure, we can construct a correction
functional for the given problem as follows

(15) wn+1(x) = wn(x) +
∫ t

0
λ (ξ) (Lwn(ξ) +Nw̃n(ξ)− g(ξ))dξ,

where λ is a Lagrange multiplier, which can be identified optimally through
variational iteration theory. The subscript n denotes the nth approximation,
wn is the nth approximate solution, and w̃n denotes a restricted variation,
i.e., δw̃n = 0. The successive approximations wn+1(x, t), n ≥ 0 of the solution
w(x, t) will be obtained by using suitably chosen function w0 as an initial
guess. Finally, the series solution is given as

(16) w(x, t) = lim
n→∞

wn(x, t).
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4. SOLUTION OF GENERALIZED DRINFELD-SOKOLOV EQUATIONS

We have to provide an approximate analytical solution of the following
problem

(17) φt + φxxx − 6φφx − 6 (ψα)x = 0, ψt − 2ψxxx + 6φψx = 0.

with initial conditions

φ (x, 0) =
−b2 − 4k4

4k2
+ 2k2 tanh2 (kx) ,(18)

ψ (x, 0) = b tanh (kx) .(19)

The analytical solution of the above problem for α = 2 is obtained in [14], and
given as following

φ (x, t) =
−b2 − 4k4

4k2
+ 2k2 tanh2

(
kx+

3b2 + 4k4

2k
t

)
,(20)

ψ (x, t) = b tanh
(
kx+

3b+ 4k4

2k
t

)
.(21)

4.1. APPLICATION OF HOMOTOPY PERTURBATION METHOD

Let us consider Eq. (17) with α = 2

φt + φxxx − 6φφx − 6
(
ψ2
)
x

= 0,(22)

ψt − 2ψxxx + 6φψx = 0.(23)

We will use initial conditions as an initial approximation

(24) φ0 (x, t) =
−b2 − 4k4

4k2
+ 2k2 tanh2 (kx) , ψ0 (x, t) = b tanh (kx) .

The constructed homotopy equations for Eq. (22) and Eq. (23) using
Eq. (9) are given bellow

(1− p)
(
v̇ − φ̇0

)
+ p

(
v̇ + v(3) − 6vv(1) − 6

(
w2
)(1)) = 0,(25)

(1− q)
(
ẇ − ψ̇0

)
+ q

(
ẇ − 2w(3) + 6vw(1)

)
= 0,(26)

where

v̇ =
∂v

∂t
, ẇ =

∂w

∂t
, v(1) =

∂v

∂x
, w(1) =

∂w

∂x
, v(3) =

∂3v

∂x3
, w(3) =

∂3w

∂x3
.
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Using Eq. (12) in Eq. (25) and comparing the coefficients of like powers
of p, we get the following system of equations

v̇0 − φ̇0 = 0,(27)

v̇1 + v
(3)
0 − 6v0v

(1)
0 − 6

(
w2

0

)(1) = 0,(28)

v̇2 + v
(3)
1 − 6v0v

(1)
1 − 6v1v

(1)
0 − 12 (w0w1)

(1) = 0,(29)

v̇3 + v
(3)
2 − 6v0v

(1)
2 − 6v1v

(1)
1 − 6v2v

(1)
0 −

(
2w0w2 + w2

1

)(1) = 0,(30)

v̇4+v
(3)
3 −6

(
v0v

(1)
3 − v1v

(1)
2 − v2v

(1)
1 − v3v

(1)
0 + 2w0w3 + 2w1w2

)
= 0,(31)

and so on. On solving Eq. (27) to Eq. (31), we have

v0 =
−b2 − 4k4

4k2
+ 2k2 tanh2 (kx) ,

v1 = −2kt tanh (kx)
(
−1 + tanh2 (kx)

) (
4k4 + 3b2

)
,

v2 =
t2

2
(
−1 + tanh2 (kx)

) (
4k4 + 3b2

) [
−4k4 + tanh2 (kx)

(
12k4 + 9b2

)
− 3b2

]
,

v3 = − t3

12k2



(
27b6 + 180k4b4 + 336k8b2 + 192k12

)
+tanh (kx)

(
1296k5b4 + 2304k9b2 + 1280k13 + 216kb6

)
− tanh2 (kx)

(
1920b2k8 + 1152k12 + 108b6 + 936k4b4

)
− tanh3 (kx)

(
4320k5b4 + 8640k9b2 + 5120k13 + 540kb6

)
+tanh4 (kx)

(
2112k12 + 81b6 + 3312k8b2 + 1404k4b4

)
+tanh5 (kx)

(
9792k9b2 + 4320k5b4 + 6144k13 + 324kb6

)
− tanh6 (kx)

(
1152k12 + 648k4b4 + 1728k8b2

)
− tanh7 (kx)

(
4356k9b2 + 1296k5b4 + 2304k13

)


,

and so on. Similarly, we can calculate v4, v5, v6 . . . up to required degree of
accuracy. Hence, the required solution for Eq. (22) is

(32) φ (x, t) = v (x, t) = v0 + v1 + v2 + v3 + v4 + · · · .

Now, using Eq. (12) in Eq. (26) and comparing the coefficients of like powers
of q, we get the following system of equations

ẇ0 + ψ̇0 = 0,(33)

ẇ1 − 2w(3)
0 + 6v0w

(1)
0 = 0,(34)

ẇ2 − 2w(3)
1 + 6v0w

(1)
1 + 6v1w

(1)
0 = 0,(35)

ẇ3 − 2w(3)
2 + 6v0w

(1)
2 + 6v1w

(1)
1 + 6v2w

(1)
0 = 0,(36)

ẇ4 − 2w(3)
3 − 6v0w

(1)
3 − 6v1w

(1)
2 − 6v2w

(1)
1 − 6v3w

(1)
0 = 0,(37)
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and so on. On solving Eq. (33) to Eq. (37), we have

w0 = b tanh (kx) ,

w1 = − t

2k
(
−1 + tanh2 (kx)

) (
4k4 + 3b2

)
,

w2 =
bt2

4k2
tanh (kx)

(
−1 + tanh2 (kx)

) (
4k4 + 3b2

)2
,

w3 = − bt3

24k3


(
108k4b4 + 144k8b4 + 64k12 + 27b6

)
− tanh2 (kx)

(
432k4b4 + 256k12 + 576k8b2 + 108b6

)
+tanh4 (kx)

(
192k12 + 432k8b2 + 324k4b4 + 81b6

)
 ,

and so on. Similarly, we can calculate w4, w5, w6 . . . up to required degree of
accuracy. Hence, the required solution for Eq. (23) is

(38) ψ (x, t) = w0 + w1 + w2 + w3 + w4 + · · · .

4.2. NUMERICAL RESULTS

Following are the numerical results for b = 0.001 and k = 0.01. We have
presented error analysis of an approximate solution up to the 4th order using
HPM.

Table 1. The comparison of the results of the HPM
with the analytical solution φ (x, t)

tn/xn 0.2 0.4 0.6 0.8 1.0

0.2 1× 10−12 3× 10−12 4× 10−12 5× 10−12 7× 10−12

0.4 1× 10−12 3× 10−12 4× 10−12 5× 10−12 7× 10−12

0.6 1× 10−12 3× 10−12 4× 10−12 5× 10−12 7× 10−12

0.8 1× 10−12 3× 10−12 4× 10−12 5× 10−12 7× 10−12

1.0 1× 10−12 3× 10−12 4× 10−12 5× 10−12 7× 10−12

Table 2. The comparison of the results of the HPM
with the analytical solution ψ (x, t)

tn/xn 0.2 0.4 0.6 0.8 1.0

0.2 0.00000 1× 10−17 1× 10−17 0.00000 3× 10−17

0.4 0.00000 0.00000 0.00000 0.00000 2× 10−17

0.6 1× 10−17 0.00000 1× 10−17 0.00000 3× 10−17

0.8 0.00000 1× 10−17 1× 10−17 0.00000 3× 10−17

1.0 0.00000 1× 10−17 0.00000 0.00000 0.00000
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4.3. APPLICATION OF VARIATIONAL ITERATION METHOD

Again consider Eq. (17) with α = 2;

φt + φxxx − 6φφx − 6
(
ψ2
)
x

= 0,(39)

ψt − 2ψxxx + 6φψx = 0.(40)

Here also, we will use initial conditions as an initial approximation

(41) φ0 (x, t) =
−b2 − 4k4

4k2
+ 2k2 tanh2 (kx) , ψ0 (x, t) = b tanh (kx) .

The constructed correction functionals for Eq. (22) and Eq. (23) are given
bellow

φn+1 (x, t) = φn+
∫ t

0
λ1 (ζ)

(
∂φn

∂ζ
+
∂3φ̃n

∂x3
− 6φn

∂φ̃n

∂x
− 6

∂ψ̃2
n

∂x

)
dζ,(42)

ψn+1 (x, t) = ψn+
∫ t

0
λ2 (ζ)

(
∂ψn

∂ζ
− 2

∂3ψ̃n

∂x3
+ 6φn

∂ψ̃n

∂x

)
dζ,(43)

where λ1 and λ2 are Lagrange multipliers and φ̃n (x, ζ) and ψ̃n (x, ζ) are re-
stricted variations, i.e., δφ̃n (x, t) = 0 and δψ̃n (x, ζ) = 0. Now, taking variation
δ both sides of Eq. (42) and Eq. (43), we get

δun+1 (x, t) = δφn+δ
∫ t

0
λ1 (ζ)

(
∂φn

∂ζ
+
∂3φ̃n

∂x3
−6φn

∂φ̃n

∂x
−6

∂ψ̃2

∂x

)
dζ,(44)

δψn+1 (x, t) = δψn+δ
∫ t

0
λ2 (ζ)

(
∂ψn

∂ζ
−2

∂3ψ̃n

∂x3
+6φn

∂ψ̃n

∂x

)
dζ.(45)

From Eq. (44) and Eq. (45), using restricted variations, stationary conditions
and integration by parts, the Lagrange multipliers are found to be λ1 = −1,
λ2 = −1. Using these values of λ1 and λ2 in Eq. (42) and Eq. (43) respectively,
we get the following iterative formulas

φn+1 (x, t) = φn−
∫ t

0

(
∂φn

∂ζ
+
∂3φ̃n

∂x3
−6φn

∂φ̃n

∂x
−6

∂ψ̃2
n

∂x

)
dζ,(46)

ψn+1 (x, t) = ψn−
∫ t

0

(
∂ψn

∂ζ
− 2

∂3ψ̃n

∂x3
+ 6φn

∂ψ̃n

∂x

)
dζ.(47)
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For n = 0, 1, Eq. (46) gives following results

φ1 = − 1
4k2

(b2 + 4k4) + 2k2 tanh2(kx)−

−2kt tanh(kx)(−1 + tanh2(kx))(4k4 + 3b2),

φ2 = − 1
4k2

(b2 + 4k4) + 2k2 tanh2(kx)−

−2kt tanh(kx)(−1 + tanh2(kx))(4k4 + 3b2)

− 1
2k
t2



−
(
24b2k5 + 16k9 + 9b4k

)
+tanh (kx)

(
36tb6 − 48tb4k4 − 320tb2k8 − 256tk12

)
+tanh2 (kx)

(
64k9 + 96b2k5 + 36b4k

)
+tanh3 (kx)

(
1280tk12 − 72tb6 + 528tb4k4 + 1792tb2k8

)
− tanh4 (kx)

(
27b4k + 72b2k5 + 48k9

)
− tanh5 (kx)

(
2624tb2k8 + 1792tk12 + 912tb4k4 − 36tb6

)
+tanh7 (kx)

(
768tk12 + 432tb4k4 + 1152tb2k8

)


.

In the same way, we can find φ3, φ4, . . . for n = 2, 3, . . .. Similarly, for
n = 0, 1, Eq. (47) gives the following results

ψ1 = b tanh (kx)− b

2k
t
(
−1 + tanh2 (kx)

) (
4k4 + 3b2

)
,

ψ2 =
b

4k2


(
8tk5 + 6tkb2

)
+ tanh (kx)

(
4k2 − 16t2k8 − 9t2b4 − 24t2b2k4

)
+tanh2 (kx)

(
256t3k11 − 6tb2k + 384t3b2k7 + 144t3b4k3 − 8tk5

)
+tanh3 (kx)

(
9t2b4 + 24t2b2k4 + 16t2k8

)
− tanh4 (kx)

(
768t3b2k7 + 288t3b4k3 + 512t3k11

)
+tanh6 (kx)

(
144t3b4k3 + 256t3k11 + 384t3b2k7

)

 .
Continuing in the same manner we can calculate ψ3, ψ4, . . ., for n = 2, 3, . . ..

4.4. NUMERICAL RESULTS

Following are the numerical results for b = 0.001, k = 0.01. We have
presented error analysis of an approximate solution up to φ2(x, t) and ψ2 (x, t)
by VIM.

Table 3. The comparison of the results of the VIM
with the analytical solution φ (x, t)

tn/xn 0.2 0.4 0.6 0.8 1.0

0.2 1.85× 10−13 2.61× 10−13 3.36× 10−13 4.27× 10−14 3.79× 10−13

0.4 1.85× 10−13 2.61× 10−13 3.36× 10−13 4.27× 10−14 3.79× 10−13

0.6 1.85× 10−13 2.61× 10−13 3.36× 10−13 4.27× 10−14 3.79× 10−13

0.8 1.85× 10−13 2.61× 10−13 3.36× 10−13 4.27× 10−14 3.79× 10−13

1.0 1.85× 10−13 2.61× 10−13 3.36× 10−13 4.27× 10−14 3.79× 10−13
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Table 4. The comparison of the results of the VIM
with the analytical solution ψ (x, t)

tn/xn 0.2 0.4 0.6 0.8 1.0

0.2 1.40×10−16 4.70×10−16 4.90×10−16 1.70×10−16 1.38×10−15

0.4 2.90×10−16 8.60×10−16 7.20×10−16 2.60×10−16 1.59×10−15

0.6 4.40×10−16 1.25×10−15 9.60×10−16 6.80×10−16 1.79×10−15

0.8 6.00×10−16 1.65×10−15 1.19×10−15 1.11×10−15 2.00×10−15

1.0 8.00×10−16 2.00×10−15 1.40×10−15 1.60×10−15 2.20 ×10−15

5. CONCLUSION

In the present work, we have applied homotopy perturbation method
and variational iteration method to find the approximate analytical solution
to the generalized Drinfeld-Sokolov equations. As a conclusion, we can note
that the results obtained are satisfactory for both methods. The results we
obtained here are in a very good agreement with that of analytical solution.
The applied methods are simple and straightforward in their implementation
and provide reasonably good results, which is clear from the tables [1, 2, 3,
4]. The results show that HPM and VIM are powerful mathematical tools for
solving both linear and nonlinear partial differential equations, and therefore,
can be widely applied in solving science and engineering problems.
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