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In [4], the authors defined Toeplitz and Hankel matrices with Pell numbers and
gave bounds for the spectral norms of them. In this study, we define Hankel
matrices involving the Pell, Pell-Lucas and modified Pell sequences and investigate
some properties of them. Moreover, we calculate certain norms of above mentioned
matrices. Also, we give upper and lower bounds for spectral norm of Hankel matrix
involving Pell, Pell-Lucas, modified Pell numbers.
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1. INTRODUCTION

In the recent years, some considerable works have been done on the norms
of some special matrices. In particular, the norms of Toeplitz and Hankel
matrices involving Fibonacci and Lucas numbers were investigated in [1] and
[2]. In [10], the circulant matrices involving Fibonacci and Lucas numbers were
studied and lower and upper bounds for the spectral norms of these matrices
were also given. In [4], the authors gave bounds for the spectral norms of
Toeplitz and Hankel matrices with Pell numbers. In this study, we define
Hankel matrices involving the Pell, Pell-Lucas and modified Pell numbers of
the form

A = (aij), aij = Pi+j−1;(1)

B = (bij), bij = Qi+j−1;(2)

C = (cij), cij = qi+j−1;(3)

respectively, and we calculate the Euclidean, column and row norms involving
these numbers. Also, we give bounds for the spectral norms of the matrices
involving Pell, Pell-Lucas and modified Pell numbers, that is, the bounds
of spectral norm related to these numbers. We find a new formula which is
different from the formula given in the reference [4], which refers to matrices
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with different indexing. And this formula involves not only Pell numbers but
also Pell-Lucas, modified Pell numbers.

Now, we give some fundamental knowledge related to our study. The Pell
sequence is defined by the following recursive relation, for n ≥ 2

(4) Pn = 2Pn−1 + Pn−2,

where P0 = 0 and P1 = 1 [3]. And the Pell-Lucas sequence is

(5) Qn = 2Qn−1 + Qn−2,

where Q0 = 2 and Q1 = 2. Similarly, the modified Pell sequence is defined
as follows.

(6) qn = 2qn−1 + qn−2, q0 = 1 = q1.

Extension to negative values of n may be made, but here we do not care about
it. If we start from n = 0, then the first elements of the Pell, Pell-Lucas and
modified Pell sequences are given by

n 0 1 2 3 4 5 6 7 8 9 · · ·
Pn 0 1 2 5 12 29 70 169 408 985 · · ·
Qn 2 2 6 14 34 82 198 478 1154 2786 · · ·
qn 1 1 3 7 17 41 99 239 577 1393 · · ·

Some important elementary relationships involving Pn, Qn and qn follow
without difficulty with the aid of the Binet formulas.

(7)
n∑

k=1

P 2
k =

PnPn+1

2
,

(8)
n−1∑
k=1

PkPk+1 =
P2n+1 − 2Pn+1Pn − 1

4
,

(9) 2Pn−1Pn + P 2
n−1 − P 2

n = (−1)n ,

(10) P2n+1 = P 2
n + P 2

n+1,

(11) P 2
n + Pn+1Pn−1 =

1
4
Q2

n,

(12) P 2
n =

1
8

(Q2n − 2 (−1)n) ,

(13)
n∑

k=1

Q2
k =

Q2n+1 + 2 (−1)n − 4
2

,
n∑

k=1

Q2k+1 =
Q2n+2 − 6

2
,

(14) (Pn+1 − Pn)2 = 2P 2
n + (−1)n ,
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(15) 4Pn = Qn + Qn−1, Pn+1 − Pn = qn, Pn−1 + Pn = qn.

The Hankel matrix is an n× n matrix

Hn = (hij)
n
i,j=1 ,

where hij = hi+j−1, i.e., a matrix of the form

Hn =



h1 h2 h3 · · · hn−1 hn

h2 h3 h4 · · · hn hn+1

h3 h4 h5 · · · hn+1 hn+2
...

...
...

. . .
...

...
hn−1 hn hn+1 · · · h2n−3 h2n−2

hn hn+1 hn+2 · · · h2n−2 h2n−1


.

Let A = (aij) be an m× n matrix. The Frobenius or Euclidean norm of
A is defined as

‖A‖F =

 m∑
i=1

n∑
j=1

|aij |2
 1

2

and also the spectral norm of A is

‖A‖2 =
√

max
1≤i≤n

|λi|,

respectively, where the numbers λi are the eigenvalues of matrix AHA. The
matrix AH is the conjugate transpose of the matrix A. The column and row
norm of matrix A are defined by

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij | , ‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij | ,

respectively [8]. For the matrices A = (aij)m×n and B = (bij)m×n, the Hada-
mard product of these matrices is defined as

A ◦B = (aijbij) .

For the m× n matrix A, the following inequality is satisfied (see [8]).

(16)
1√

min(m,n)
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F .

The maximum column length norm c1(·) and maximum row length norm r1(·)
for the matrix A = (aij)m×n are defined by

(17) c1(A) ≡ max
j

√∑
i

|aij |2 = max
j

∥∥[aij ]
m
i=1

∥∥
F

,
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and

(18) r1(A) ≡ max
i

√∑
j

|aij |2 = max
i

∥∥∥[aij ]
n
j=1

∥∥∥
F

,

respectively.
In [7], the author showed that if A ◦B = C, then

(19) ‖C‖2 ≤ r1(A) c1(B).

2. MAIN THEOREMS

In this section, we give the Euclidean, spectral, column and row norms
of the Hankel matrices with Pell, Pell-Lucas and modified Pell numbers.

Theorem 1. If A is an n× n matrix A = (aij) with aij = Pi+j−1, then
we have

‖A‖F =
1
2

√
P 2

2n − 2P 2
n + ξ,

or equivalently

‖A‖F =
1

2
√

2

√
q2
2n − 2q2

n + 1,

where ‖·‖F is the Frobenius norm, Pn denotes the nth Pell number and

ξ =
{

2 if n odd,
0 if n even.

Proof. Since

A =



P1 P2 P3 · · · Pn−1 Pn

P2 P3 P4 · · · Pn Pn+1

P3 P4 P5 · · · Pn+1 Pn+2
...

...
...

. . .
...

...
Pn−1 Pn Pn+1 · · · P2n−3 P2n−2

Pn Pn+1 Pn+2 · · · P2n−2 P2n−1


and

n∑
k=1

P 2
k =

PnPn+1

2
,

n−1∑
k=1

PkPk+1 =
P2n+1 − 2PnPn+1 − 1

4
,

we have

‖A‖F =

 n∑
i=1

n∑
j=1

|aij |2
 1

2

=

(
n∑

k=1

P 2
k +

n+1∑
k=2

P 2
k + · · ·+

2n−1∑
k=n

P 2
k

) 1
2

,
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‖A‖F =

((
n∑

k=1

P 2
k +

n+1∑
k=1

P 2
k + · · ·+

2n−1∑
k=1

P 2
k

)
−

(
n−1∑
k=1

k∑
i=1

P 2
i

)) 1
2

,

‖A‖F =

(
1
2

(PnPn+1 + Pn+1Pn+2 + · · ·+ P2n−1P2n)− 1
2

n−1∑
k=1

PkPk+1

) 1
2

,

‖A‖F =

(
1
2

(
2n−1∑
k=1

PkPk+1 − 2
n−1∑
k=1

PkPk+1

)) 1
2

,

‖A‖F =

(
P 2

2n + P 2
2n+1 − 2P2nP2n+1 − 2

(
P 2

n + P 2
n+1 − 2PnPn+1

)
+ 1

8

) 1
2

,

‖A‖F =
1
2
(
P 2

2n − 2P 2
n + 1− (−1)n) 1

2 .

Thus, we obtain the desired equality. Likewise, from the equation Pn+1−Pn =
qn, it can be seen that

‖A‖F =
1

2
√

2

√
q2
2n − 2q2

n + 1.

Thus, the proof is completed. �

In the following theorem, the column and row norms of the matrix A are
given in terms of the modified Pell numbers.

Theorem 2. Let A be an n×n matrix with aij = Pi+j−1. Then we have

‖A‖1 = ‖A‖∞ =
1
2

(q2n − qn) ,

where ‖A‖1, ‖A‖∞ are the column and row norms, respectively.

Proof. From the definition of the matrix A, we can write

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij | = max
1≤j≤n

{|a1j |+ |a2j |+ · · ·+ |anj |} ,

‖A‖1 = Pn + Pn+1 + · · ·+ P2n−1,

‖A‖1 =
2n−1∑
i=1

Pi −
n−1∑
i=1

Pi.

Thus, we get

‖A‖1 =
(P2n + P2n−1 − 1)− (Pn + Pn−1 − 1)

2
=

1
2

(q2n − qn) .
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Similarly, the row norm of matrix A can be computed as

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij | =
2n−1∑
k=n

Pk =
1
2

(q2n − qn) ,

as desired. �

Now, we give bounds for spectral norm of the matrix A involving Pell
and modified Pell numbers. Note that this bound is different from the one in
[4] because there the indexing starts from 0, while here it starts from 1.

Theorem 3. If A is an n× n matrix A = (aij) with aij = Pi+j−1, then
we have

1
2
√

n

√
P 2

2n − 2P 2
n + ξ ≤

≤ ‖A‖2 ≤
1
2

√
(P2nP2n−1 − PnPn−1) (P2n−2P2n−1 − PnPn−1 + 2)

and
1

2
√

2n

√
q2
2n − 2q2

n + 1 ≤

≤ ‖A‖2 ≤
1
8

√
(q4n−1 − q2n−1 + ξ) (q4n−3 − q2n−1 + ξ + 8).

Proof. From Theorem 1 and the inequality (16), we can write
1

2
√

n

√
P 2

2n − 2P 2
n + ξ ≤ ‖A‖2 and

1
2
√

2n

√
q2
2n − 2q2

n + 1 ≤ ‖A‖2 .

On the other hand, let us define two new matrices Un = (uij)
n
i,j=1, where

uij =
{

Pi+j−1 i ≤ j,
1 i > j,

and Vn = (vij)
n
i,j=1, where

vij =
{

Pi+j−1 i > j,
1 i ≤ j.

That is, we write

Un = (uij) =



P1 P2 P3 · · · Pn−1 Pn

1 P3 P4 · · · Pn Pn+1

1 1 P5 · · · Pn+1 Pn+2
...

...
...

. . .
...

...
1 1 1 · · · P2n−3 P2n−2

1 1 1 · · · 1 P2n−1


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and

Vn = (vij) =


1 1 1 · · · 1
P2 1 1 · · · 1
P3 P4 1 · · · 1
...

...
...

. . .
...

Pn Pn+1 Pn+2 · · · 1

 ,

respectively. It can be easily seen that A = Un ◦Vn . Thus, we obtain that

r1 (Un) = max
i

√∑
j

|uij |2 =

√√√√2n−1∑
i=n

P 2
i =

=

√√√√2n−1∑
i=1

P 2
i −

n−1∑
i=1

P 2
i =

√
P2n−1P2n − Pn−1Pn

2

and

c1 (Vn) = max
j

√∑
i

|vij |2 =

√
1 +

P2n−2P2n−1 − Pn−1Pn

2
.

Then, using the inequality ‖C‖2 ≤ r1(A)c1(B) we get

(20) ‖A‖2 ≤
1
2

√
(P2nP2n−1 − PnPn−1) (P2n−2P2n−1 − PnPn−1 + 2).

If we use the inequality (20) and the inequality 1
2
√

n

√
P 2

2n − 2P 2
n + ξ ≤ ‖A‖2,

then we obtain that
1

2
√

n

√
P 2

2n − 2P 2
n + ξ ≤ ‖A‖2 ≤

≤ 1
2

√
(P2nP2n−1 − PnPn−1) (P2n−2P2n−1 − PnPn−1 + 2).

In a similar way the other inequality can be easily seen. Thus, the proof is
completed. �

In the following theorem, we give the Euclidean (Frobenius) norm of the
matrix involving Pell-Lucas numbers.

Theorem 4. If B is an n× n matrix with bij = Qi+j−1, then we have

‖B‖F =
1
2

√
Q4n − 2Q2n − 2 + 4 (−1)n,

or
‖B‖F =

√
2
(
P 2

2n − 2P 2
n

)
,

where ‖·‖F is the Frobenius norm and Qn denotes the nth Pell-Lucas number.
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Proof. From the definition of Frobenius norm we can write the following
equations for the matrix B

‖B‖F =

 n∑
i=1

n∑
j=1

|bij |2
 1

2

=

(
n∑

k=1

Q2
k +

n+1∑
k=2

Q2
k + · · ·+

2n−1∑
k=n

Q2
k

) 1
2

,

‖B‖F =

((
n∑

k=1

Q2
k +

n+1∑
k=1

Q2
k + · · ·+

2n−1∑
k=1

Q2
k

)
−

(
n−1∑
k=1

k∑
i=1

Q2
i

)) 1
2

.

If we use the equations given in (13), then we obtain

‖B‖F =

(
1
2

[
Q4n − 6

2
+ 2

−1− (−1)2n

2
+ 4

1 + (−1)n

2
−Q2n + 6− 4

]) 1
2

.

That is,

‖B‖F =
1
2

√
Q4n − 2Q2n − 2 + 4 (−1)n.

Similarly, if we use the equations Pn + Pn−1 = qn = Qn

2 then we have

‖B‖F =
√

2
(
P 2

2n − 2P 2
n

)
.

So, the proof is completed. �

The following corollary determines the column and row norms of matrix
B and its proof can be easily seen.

Corollary 1. If B is an n×n matrix with bij = Qi+j−1, then we have

‖B‖1 = ‖B‖∞ =
1
2

(Q2n + Q2n−1 −Qn −Qn−1) = 2 (P2n − Pn) .

Theorem 5. If B is an n× n matrix with bij = Qi+j−1, then we have
1

2
√

n

√
Q4n − 2Q2n − 2 + 4 (−1)n ≤ ‖B‖2 ≤

≤ 1
2

√
(Q4n −Q2n) (Q4n−2 −Q2n + 2),

and√
2
n

(P 2
2n − 2P 2

n) ≤ ‖B‖2 ≤
√(

4(P 2
2n − P 2

n) + ξ
) (

4(P 2
2n−1 − P 2

n) + (−1)n+1
)
.

Proof. Let us define two matrices Rn = (rij)
n
i,j=1 and Sn = (sij)

n
i,j=1

such that

rij =
{

Qi+j−1 i ≤ j,
1 i > j
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and

sij =
{

Qi+j−1 i > j,
1 i ≤ j,

respectively. Using the inequality ‖C‖2 ≤ r1(A)c1(B), we can write

‖B‖2 ≤ r1 (Rn) c1 (Sn) .

From the definitions of r1 (Rn) and c1 (Sn) we have that

r1 (Rn) = max
i

√∑
j

|rij |2 =

√√√√ n∑
j=1

|rnj |2,

r1 (Rn) =

√√√√2n−1∑
i=n

Q2
i =

√√√√2n−1∑
i=1

Q2
i −

n−1∑
i=1

Q2
i =

√
Q4n −Q2n

2
,

and

c1 (Sn) = max
j

√∑
i

|sij |2 =

√√√√1 +
2n−2∑
i=n

Q2
i =

√
Q4n−2 −Q2n + 2

2
.

Thus, the upper bound of B can be found as

‖B‖2 ≤
1
2

√
(Q4n −Q2n) (Q4n−2 −Q2n + 2).

On the other hand, using the inequality 1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F , we get√

2
n

(
P 2

2n − 2P 2
n

)
≤‖B‖2≤

√(
4
(
P 2

2n − P 2
n

)
+ ξ
) (

4
(
P 2

2n−1 − P 2
n

)
+ (−1)n+1

)
.

Thus, the proof is completed. �

The following corollary is obvious if the norm axiom ‖αA‖ = |α| ‖A‖ and
the identity Qn = 2qn are used.

Corollary 2. For the matrices C = (cij)n×n, cij = qi+j−1, and B =
(bij)n×n, bij = Qi+j−1, we have the following results:

‖C‖F =
1

2
√

2

√
q4n − q2n − 1 + 2 ( −1)n or ‖C‖F =

√
1
2
(
P 2

2n − P 2
n

)
.(i)

‖C‖1 = ‖C‖∞ =
1
2

(q2n + q2n−1 − qn − qn−1) = P2n − Pn.(ii)
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1
2
√

2n

√
q4n − 2q2n−1+2(−1)n≤‖C‖2≤

√
(q4n−q2n)(q4n−2−q2n+1).(iii)

1√
2n

√(
P 2

2n − 2P 2
n

)
≤ ‖B‖2 ≤(iv)

≤ 1
2

√(
4
(
P 2

2n − P 2
n

)
+ ξ
) (

4
(
P 2

2n−1 − P 2
n

)
+ ( −1)n+1

)
.
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