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Let G be a permutation group on a set Ω with no fixed point in Ω and let m
be a positive integer. If for each subset Γ of Ω the size |Γg \ Γ| is bounded, for
g ∈ G, we define the movement of g as the max |Γg \Γ| over all subsets Γ of Ω, and
the movement of G is defined as the maximum of move(g) over all non-identity
elements of g ∈ G. In this paper we will classify all transitive permutation groups
G with bounded movement equal to m, such that G is not a 2-group but in which
every non-identity element has the movement m or m − 1.
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1. INTRODUCTION

Let G be a permutation group on a set Ω with no fixed points in Ω
and let m be a positive integer. If for each subset Γ of Ω and each element
g ∈ G, the size |Γg \Γ| is bounded, we define the movement of Γ as move(Γ) =
maxg∈G |Γg\Γ|. If move(Γ) 6 m for all Γ ⊆ Ω, then G is said to have bounded
movement and the movement of G is defined as the maximum of move(Γ) over
all subsets Γ. This notion was introduced in [11]. Similarly, for each 1 6= g ∈ G,
we define the movement of g as the max |Γg \ Γ| over all subsets Γ of Ω. If all
non-identity elements of G have the same movement, then we say that G has
constant movement.

Clearly, every permutation group in which every non-identity element
has movement m or m − 1, is a permutation group with bounded movement
equal to m. Further, by [11, Theorem 1], if G has movement equal to m, then
Ω is finite, and its size is bounded by a function of m.

For each transitive permutation group G on a set Ω with bounded move-
ment equal to m, where G is not a 2-group, the maximum bounds of Ω were
obtained in [7, 11] as follows:

Lemma 1.1 [11, Lemma 2.2]. Let G be a transitive permutation group on
a set Ω such that G has movement equal to m. Suppose G is not a 2-group and
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p is the least odd prime dividing |G|, then |Ω| 6 b2mp/(p−1)c. (For x ∈ R, bxc
denotes the greatest integer less than or equal to x.).

We will see that every transitive permutation group G with bounded
movement equal to m, such that G is not a 2-group but in which every non-
identity element has the movement m or m−1, the bound of Lemma 1.1 is not
attained. For example, if we consider G := Z2p as a permutation group on a
set of size n = 2p, where p is an odd prime, then we see that every non-identity
element has the movement p or p− 1 (see Lemma 3.2).

The purpose of this paper is to classify all transitive permutation groups
G with bounded movement equal to m, such that G is not a 2-group but in
which every non-identity element has the movement m or m − 1. It follows
that m ≥ 2. We denote by KoP a semi-direct product of K by P with normal
subgroup K.

We now have the following main theorem:

Theorem 1.2. Let m be a positive integer, and let G be a transitive
permutation group on a set Ω with no fixed point in Ω and bounded movement
equal to m, in which every non-identity element has movement m or m − 1.
Suppose G is not a 2-group and p is the least odd prime dividing |G|. Then G
is one of the following groups:

(1) G ∈ {S4, A4}, |Ω| = 4 and m = 2;
(2) G ∈ {S5, A5}, |Ω| = 5 and m = 2;
(3) G ∈ {D18, Z9}, |Ω| = 9 and m = 4;
(4) G = D2n, |Ω| = n, where n = 2p, and m = p;
(5) G = Z2p, |Ω| = 2p and m = p;
(6) G = AGL(1, q), where q := 2p+1 is an odd prime, |Ω| = q and m = p.

2. PRELIMINARIES

Let G be a transitive permutation group on a finite set Ω. Then by
[13, Theorem 3.26], which we shall refer to as Burnside’s lemma, the average
number of fixed points in Ω of elements of G is equal to the number of G-orbits
in Ω, namely 1, and since 1G fixes |Ω| points and |Ω| > 1, it follows that there
is some element of G which has no fixed points in Ω. We shall say that such
elements are fixed point free on Ω.

Let 1 6= g ∈ G and suppose that g in its disjoint cycle representation has
t nontrivial cycles of lengths l1, l2, . . . , lt, say. We might represent g as

g = (a1 a2 . . . al1)(b1 b2 . . . bl2) . . . (z1 z2 . . . zlt).

Let Γ(g) denote a subset of Ω consisting of bli/2c points from the i-th cycle,
for each i, chosen in such a way that Γ(g)g ∩ Γ(g) = ∅. For example, we
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could choose

Γ(g) = {a2, a4, . . . , ak1 , b2, b4, . . . , bk2 , . . . , z2, z4, . . . , zkt},

where ki = li − 1 if li is odd and ki = li if li is even. Note that Γ(g) is not
uniquely determined as it depends on the way each cycle is written down. For
any set Γ(g) of this kind we say that Γ(g) consists of every second point of
every cycle of g. From the definition of Γ(g) we see that

|Γ(g)g \ Γ(g)| = |Γ(g)| =
t∑

i=1

bli/2c.

The next lemma shows that this quantity is an upper bound for |Γg \ Γ|
for an arbitrary subset Γ of Ω.

Lemma 2.1 [7, Lemma 2.1]. Let G be a permutation group on a set Ω

and suppose that Γ ⊆ Ω. Then for each g ∈ G, |Γg \ Γ| ≤
t∑

i=1
bli/2c where li is

the length of the i-th cycle of g and t is the number of nontrivial cycles of g
in its disjoint cycle representation. This upper bound is attained for Γ = Γ(g)
defined above.

Let m be a positive integer, and let G be a permutation group on a set
Ω of size n with bounded movement equal to m, in which every non-identity
element has the movement m or m−1. Then we have the following basic result:

Proposition 2.2. Let m be a positive integer, and let G be a permuta-
tion group on a set Ω of size n with bounded movement equal to m, in which
every non-identity element has the movement m or m − 1. Further, suppose
that 1 6= g ∈ G and g = c1 . . . cs is the decomposition of g into its disjoint
non-trivial cycles such that |ci| = li for 1 ≤ i ≤ s. Then either

(i) l := l1 = l2 = · · · = ls, where l is an odd prime or a power of 2;
(ii) s = 2, li = 2 and lj = 3 for 1 ≤ i, j ≤ 2 and i 6= j;
(iii) s = 2, li = 3 and lj = 6 for 1 ≤ i, j ≤ 2 and i 6= j;
(iv) g has a cycle of length 2 and (s − 1) cycles of length a power of 2

for s ≥ 2.
Moreover, the order of g is either an odd prime, a power of 2 or 6. Otherwise,
g is a cycle of length 9 or 2p, where p is an odd prime.

Proof. Let 1 6= g ∈ G. Then by Lemma 2.1, the movement of g, move(g),
is the size of the subset Γ(g) consisting of every second point of every cycle

g, that is, move(g) =
s∑

i=1
bli/2c. For each 1 ≤ t ≤ s, we consider the element

h = glt of G and compare the movement of h with the movement of g. As
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above, we have

move(h) ≤
∑
j 6=t

blj/2c <

s∑
i=1

bli/2c = move(g).

We now consider the following two cases:

Case 1. Let move(g) = m− 1, then h = 1.
Hence, we must have l := l1 = l2 = · · · = ls. Suppose now that l is not

a power of 2, and let p be an odd prime such that l = pk for some positive
integer k. Then by comparing the movement of g and its power gk we obtain

sbl/2c = move(g) = move(gk) = sk
p− 1

2
.

It can be easily verified that bkp
2 c = k(p−1)/2 if and only if k = 1, and so l = p.

Case 2. Let move(g) = m, then move(h) = m− 1 or h = 1.
We first suppose that move(h) = m− 1. Then with new enumeration we

can assume that h = c1c2 . . . cs′ , where s′ < s and s′ + 1 ≤ t ≤ s. Therefore,

move(g) = move(h) +
s∑

i=s′+1

⌊ li
2

⌋
.

Since move(g) = move(h)+1, we must have t = s = s′+1 and also lt = 2 or 3.
Again with suitable enumeration we can suppose that h = c1 . . . ct−1ct+1 . . . cs,
where move(h) = m − 1. By Case 1, we have l := l1 = · · · = lt−1 = lt+1 =
· · · = ls where l is an odd prime or a power of 2. It is straightforward to verify
that s = 2, li = 2 and lj = 3 for 1 ≤ i, j ≤ 2 and i 6= j.

In the second case we may assume that h = 1. Then we must have
l := l1 = l2 = · · · = ls. Suppose now that l is not a power of 2, and let p be an
odd prime such that l = pk for some positive integer k. Then we obtain that

move(g) = s
⌊pk

2

⌋
, move(gk) = sk

p− 1
2

.

It can be easily shown that move(gk) < m − 1 for k ≥ 4, a contradiction.
So, we may assume that k < 4. For k = 1, we have move(g) = move(gk) and
l = p. Now, if k = 2, then we have move(g) = sp and move(gk) = s(p − 1).
This implies that s = 1 and l = 2p, that is, g is a cycle of length 2p. Finally,
if k = 3 and p 6= 3, then move(gp) < m − 1, a contradiction. Thus p = 3. It
follows that move(g) = 4s and move(gk) = 3s, and this implies that s = 1 and
l = 9, that is, g is a cycle of length 9.

In the second case we may assume that move(h) = move(gli) = m − 1
and h = glj = 1 for some 1 ≤ i, j ≤ t and i 6= j. As above, we can conclude
that g is either (s − 1) cycles of length a power of 2 and a cycle of length
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2 for s ≥ 2, or a cycle of length 6 and a cycle of length 3. The result now
follows. �

3. THE PROOF OF THEOREM 1.2

In this section we suppose that m is a positive integer and G is a transitive
permutation group on a set Ω of size n with bounded movement equal to m,
such that G is not a 2-group but in which every non-identity element has the
movement m or m − 1. If for every 1 6= g ∈ G, move(g) = m then G has
constant movement were classified in [2]. So, in the rest of this section we can
assume that G has at least one element of movement m− 1. We also suppose
that p is the least odd prime dividing |G|.

Lemma 3.1. The groups G = D18 and G = Z9 act transitively on a set of
size n = 9 and in this action every non-identity element has movement 4 or 3.

Proof. Let M := 〈α〉 and N := 〈β〉 be two cyclic permutation groups
on the set Ω = {1, 2, . . . , 9}, where α = (1 2 . . . 9) is a cycle of length 9 and
β = (1 3)(4 9)(5 8)(6 7) is four cycles of length 2. It is straightforward to
verify that M ∼= Z9 and D18

∼= 〈M,N〉. Since M 6 G act transitively on a set
Ω, so G is a transitive permutation group on a set Ω. Let 1 6= g ∈ M, then
it is easy to see that g has order 3 or 9. Suppose that Γ(g) consist of every
second point of every cycle of g. If o(g) = 9 then g is a cycle of length 9 and
hence |Γ(g)g \ Γ(g)| = 4, that is, move(g) = 4. Now, if o(g) = 3 then g has
three cycles of length 3 and hence |Γ(g)g \Γ(g)| = 3, that is, move(g) = 3. Let
1 6= g ∈ 〈M,N〉, g /∈ M and g /∈ N. Then g has four cycles of length 2 and
similarly, move(g) = 4. Also we know that move(β) = 4. This implies that
every non-identity element of G has movement 4 or 3. �

Lemma 3.2. The group G = Z2p act transitively on a set of size 2p,
where p is an odd prime, and in this action every non-identity element has
movement p or p− 1.

Proof. Let 1 6= g ∈ G. Then it can be easily shown that g has order 2,
p or 2p. Suppose that Γ(g) consist of every second point of every cycle of g.
If o(g) = 2 then g has p cycles of length 2 and hence |Γ(g)g \ Γ(g)| = p, that
is, move(g) = p. If o(g) = p then g has two cycles of length p and hence
|Γ(g)g \ Γ(g)| = 2p−1

2 = p − 1, that is, move(g) = p − 1. Finally, if o(g) = 2p
then g is a cycle of length 2p and similarly, move(g) = p. It follows that every
non-identity element of G has movement p or p− 1. �

Lemma 3.3. The group G = D2n act transitively on a set of size n = 2p,
where p is an odd prime, and in this action every non-identity element has
movement p or p− 1.
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Proof. Let M := 〈α〉 and N := 〈β〉 be two cyclic permutation groups on
the set Ω = {1, 2, . . . , 2p}, where α = (1 2 . . . 2p) is a cycle of length 2p and
β = (1 3)(4 2p) . . . (p+1 p+3) is (p−1) cycles of length 2. It is straightforward
to verify that G = D2n

∼= 〈M,N〉. Since M 6 G act transitively on a set Ω, so
G is a transitive permutation group on a set Ω. Suppose now that M1 ⊂ M
consists precisely of those elements whose form is a cycle of length 2p, M2 ⊂ M
consists precisely of those elements whose form is two cycles of length p and
M3 ⊂ M consists precisely of those elements whose form is p cycles of length 2.
Consequently, M1,M2 and M3 are a partition of M \{1}. By Lemma 3.2, every
element of M1 and M3 has the movement equal to p and every element of M2

has the movement equal to p − 1 and also move(β) = p − 1. Let 1 6= g ∈ G,
g /∈ M and g /∈ N. Then either g ∈ M1β or g ∈ M2β and or g ∈ M3β. If
g ∈ M1β or g ∈ M3β, then g has p cycles of length 2, that is, move(g) = p. If
g ∈ M2β, then g has (p−1) cycles of length 2, that is, move(g) = p−1. These
implies that every non-identity element of G has movement p or p− 1. �

Let H be cyclic of order n and K = 〈k〉 be cyclic of order m and suppose
r is an integer such that rm ≡ 1(mod n). For i = 1, . . . ,m, let (ki)θ : H → H

be defined by h(ki)θ = hri
for h in H. It is straightforward to verify that each

(ki)θ is an automorphism of H, and that θ is a homomorphism from K to
Aut(H). Hence the semi-direct product G = H o K (with respect to θ) exists
and if H = 〈h〉, then G is given by the defining relations:

hn = 1, km = 1, k−1hk = hr, with rm ≡ 1(mod n).

Here every element of G is uniquely expressible as hikj , where 0 ≤ i ≤ n− 1,
0 ≤ j ≤ m − 1. Certain semi-direct products of this type (as a permutation
group on a set Ω of size n) also provide examples of transitive permutation
groups where every non-identity element has the movement m or m− 1, and
the bound in Lemma 1.1, is not attained (as the following lemma). We note
that, if n = q, a prime, then by [15, Theorem 3.6.1] this group G is a subgroup
of the Frobenius group AGL(1, q) = Zq o Zq−1.

Lemma 3.4. Let G be a semi-direct product of the Frobenius group G =
Zq o Zq−1, where q := 2p+1 is an odd prime, denote a group defined as above
of order q(q − 1). Then G act transitively on a set of size n = q and in this
action every non-identity element has movement p or p− 1.

Proof. By the above statement, the group G is a Frobenius group and
has up to a permutational isomorphism a unique transitive representation of
degree q on a set Ω. Let g ∈ G; o(g) = q. If Γ(g) consists of every second
point of the unique cycle of g, then move(g) = q−1

2 = p. Since the order of
each element of G is either 2, p, q or 2p, so by Lemma 3.2, every non-identity
element has movement p or p− 1. �
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Now, we are ready to complete the proof of the main theorem:

Let G, Ω and m be as in Theorem 1.2 with n := |Ω| and move(G) = m.
Now, we consider two cases:

Case 1. n is the maximum possible degree as in Lemma 1.1.
A transitive permutation group of degree 3m (which is the bound of

Lemma 1.1, for p = 3) with bounded movement equal to m, were classified in
[10] and the examples are as follows:

(a) G = S3,m = 1;
(b) G = A4 or A5,m = 2;
(c) G is a 3-group of exponent 3.
It can be easily verified that the movements of all of these groups are not

two consecutive integers, which contradicts our hypothesis.
But for p ≥ 5, by [7, Theorem 1.2], one of the following holds:
(1) |Ω| = p, m = (p − 1)/2 and G = Zp o Z2a , where 2a|(p − 1) for

some a ≥ 1;
(2) |Ω| = 2sp, m = 2s−1(p − 1), 1 < 2s < p, and G = K o P with K a

2-group and P = Zp is fixed point free on Ω; K has p-orbit of length 2s, and
each element of K moves at most 2s(p− 1) point of Ω;

(3) G is a p-group of exponent bounded in terms of p only.
By [2, Theorem 1.1], all group in part (1), part (3) and the part (2),

when p is a Mersenne prime and each non-identity element of K moves exactly
2s(p−1) point of Ω, are examples in which every non-identity element has the
same movement equal to m. We will show that the other groups in part (2)
have some elements whose movement are less than m − 1, which contradicts
our hypothesis. In part(2), with s ≥ 2, when p is not a Mersenne prime and
each element of K moves at most 2s(p−1) point of Ω, since every non-identity
element of G = K.P has movement m or m − 1, there exist k ∈ K with
(p − 1) cycles of length 2s. We consider the element kkg of K. This element
is fixed point free on Ω and so has movement p.2s−1, which is a contradiction.
Also, for s = 1, according to the [7, Lemma 3.3] we can easily achieve the
same contradiction.

Case 2. n is not the maximum possible degree as in Lemma 1.1.
By Proposition 2.2, each non-trivial permutation of G in its disjoint cycle

representation has either a cycle of length 2p, a cycle of length 9, a cycle of
length 2 and a cycle of length 3, a cycle of length 3 and a cycle of length 6,
(s− 1) cycles of length a power of 2 and a cycle of length 2 for s ≥ 2, multiple
cycles of length p, or multiple cycles of length a power of 2, namely g2p, g9,
g2,3, g3,6, g2a,2, gp, g2a , respectively.

If G consists precisely of those elements whose form is g2a or gp, then by
[2], n is the maximum possible except the case when the groups S4, A4 and
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A5 act transitively on a set of size 4 and 5, respectively. We may only consider
some of the cases which are satisfy in our assumptions. For example, if G is a
cyclic group generated by g2p or g9, then by Lemma 3.1 and Lemma 3.2, we
have G = Z2p or Z9. If G consists precisely of those elements whose form is
either g9, gp, or g2a , then it can be easily verified that G = D18. If G consists
precisely of those elements whose form is either g2p, gp or g2a , then G is the
groups as in Lemma 3.3 and Lemma 3.4. Finally, if G consists precisely of
those elements whose form is either g2,3, g2a or gp, then it can be easily shown
that G = S5. These completes the proof of Theorem 1.2. �
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