TRANSITIVE PERMUTATION GROUPS WITH ELEMENTS OF MOVEMENT m OR $m-1$

MEHDI ALAEIYAN and BAHMAN ASKARI

Abstract

Let G be a permutation group on a set Ω with no fixed point in Ω and let m be a positive integer. If for each subset Γ of Ω the size $\left|\Gamma^{g} \backslash \Gamma\right|$ is bounded, for $g \in G$, we define the movement of g as the max $\left|\Gamma^{g} \backslash \Gamma\right|$ over all subsets Γ of Ω, and the movement of G is defined as the maximum of move (g) over all non-identity elements of $g \in G$. In this paper we will classify all transitive permutation groups G with bounded movement equal to m, such that G is not a 2 -group but in which every non-identity element has the movement m or $m-1$.

AMS 2010 Subject Classification: 20B05.
Key words: permutation group, transitive, bounded movement, fixed point free element.

1. INTRODUCTION

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for each subset Γ of Ω and each element $g \in G$, the size $\left|\Gamma^{g} \backslash \Gamma\right|$ is bounded, we define the movement of Γ as move $(\Gamma)=$ $\max _{g \in G}\left|\Gamma^{g} \backslash \Gamma\right|$. If move $(\Gamma) \leqslant m$ for all $\Gamma \subseteq \Omega$, then G is said to have bounded movement and the movement of G is defined as the maximum of move (Γ) over all subsets Γ. This notion was introduced in [11]. Similarly, for each $1 \neq g \in G$, we define the movement of g as the max $\left|\Gamma^{g} \backslash \Gamma\right|$ over all subsets Γ of Ω. If all non-identity elements of G have the same movement, then we say that G has constant movement.

Clearly, every permutation group in which every non-identity element has movement m or $m-1$, is a permutation group with bounded movement equal to m. Further, by [11, Theorem 1], if G has movement equal to m, then Ω is finite, and its size is bounded by a function of m.

For each transitive permutation group G on a set Ω with bounded movement equal to m, where G is not a 2 -group, the maximum bounds of Ω were obtained in $[7,11]$ as follows:

Lemma 1.1 [11, Lemma 2.2]. Let G be a transitive permutation group on a set Ω such that G has movement equal to m. Suppose G is not a 2-group and

MATH. REPORTS 14(64), 4 (2012), 317-324
p is the least odd prime dividing $|G|$, then $|\Omega| \leqslant\lfloor 2 m p /(p-1)\rfloor$. (For $x \in \mathbb{R},\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.).

We will see that every transitive permutation group G with bounded movement equal to m, such that G is not a 2 -group but in which every nonidentity element has the movement m or $m-1$, the bound of Lemma 1.1 is not attained. For example, if we consider $G:=\mathbb{Z}_{2 p}$ as a permutation group on a set of size $n=2 p$, where p is an odd prime, then we see that every non-identity element has the movement p or $p-1$ (see Lemma 3.2).

The purpose of this paper is to classify all transitive permutation groups G with bounded movement equal to m, such that G is not a 2 -group but in which every non-identity element has the movement m or $m-1$. It follows that $m \geq 2$. We denote by $K \rtimes P$ a semi-direct product of K by P with normal subgroup K.

We now have the following main theorem:
Theorem 1.2. Let m be a positive integer, and let G be a transitive permutation group on a set Ω with no fixed point in Ω and bounded movement equal to m, in which every non-identity element has movement m or $m-1$. Suppose G is not a 2-group and p is the least odd prime dividing $|G|$. Then G is one of the following groups:
(1) $G \in\left\{S_{4}, A_{4}\right\},|\Omega|=4$ and $m=2$;
(2) $G \in\left\{S_{5}, A_{5}\right\},|\Omega|=5$ and $m=2$;
(3) $G \in\left\{D_{18}, \mathbb{Z}_{9}\right\},|\Omega|=9$ and $m=4$;
(4) $G=D_{2 n},|\Omega|=n$, where $n=2 p$, and $m=p$;
(5) $G=\mathbb{Z}_{2 p},|\Omega|=2 p$ and $m=p$;
(6) $G=A G L(1, q)$, where $q:=2 p+1$ is an odd prime, $|\Omega|=q$ and $m=p$.

2. PRELIMINARIES

Let G be a transitive permutation group on a finite set Ω. Then by [13, Theorem 3.26], which we shall refer to as Burnside's lemma, the average number of fixed points in Ω of elements of G is equal to the number of G-orbits in Ω, namely 1 , and since 1_{G} fixes $|\Omega|$ points and $|\Omega|>1$, it follows that there is some element of G which has no fixed points in Ω. We shall say that such elements are fixed point free on Ω.

Let $1 \neq g \in G$ and suppose that g in its disjoint cycle representation has t nontrivial cycles of lengths $l_{1}, l_{2}, \ldots, l_{t}$, say. We might represent g as

$$
g=\left(a_{1} a_{2} \ldots a_{l_{1}}\right)\left(b_{1} b_{2} \ldots b_{l_{2}}\right) \ldots\left(z_{1} z_{2} \ldots z_{l_{t}}\right) .
$$

Let $\Gamma(g)$ denote a subset of Ω consisting of $\left\lfloor l_{i} / 2\right\rfloor$ points from the i-th cycle, for each i, chosen in such a way that $\Gamma(g)^{g} \cap \Gamma(g)=\varnothing$. For example, we
could choose

$$
\Gamma(g)=\left\{a_{2}, a_{4}, \ldots, a_{k_{1}}, b_{2}, b_{4}, \ldots, b_{k_{2}}, \ldots, z_{2}, z_{4}, \ldots, z_{k_{t}}\right\}
$$

where $k_{i}=l_{i}-1$ if l_{i} is odd and $k_{i}=l_{i}$ if l_{i} is even. Note that $\Gamma(g)$ is not uniquely determined as it depends on the way each cycle is written down. For any set $\Gamma(g)$ of this kind we say that $\Gamma(g)$ consists of every second point of every cycle of g. From the definition of $\Gamma(g)$ we see that

$$
\left|\Gamma(g)^{g} \backslash \Gamma(g)\right|=|\Gamma(g)|=\sum_{i=1}^{t}\left\lfloor l_{i} / 2\right\rfloor .
$$

The next lemma shows that this quantity is an upper bound for $\left|\Gamma^{g} \backslash \Gamma\right|$ for an arbitrary subset Γ of Ω.

Lemma 2.1 [7, Lemma 2.1]. Let G be a permutation group on a set Ω and suppose that $\Gamma \subseteq \Omega$. Then for each $g \in G,\left|\Gamma^{g} \backslash \Gamma\right| \leq \sum_{i=1}^{t}\left\lfloor l_{i} / 2\right\rfloor$ where l_{i} is the length of the i-th cycle of g and t is the number of nontrivial cycles of g in its disjoint cycle representation. This upper bound is attained for $\Gamma=\Gamma(g)$ defined above.

Let m be a positive integer, and let G be a permutation group on a set Ω of size n with bounded movement equal to m, in which every non-identity element has the movement m or $m-1$. Then we have the following basic result:

Proposition 2.2. Let m be a positive integer, and let G be a permutation group on a set Ω of size n with bounded movement equal to m, in which every non-identity element has the movement m or $m-1$. Further, suppose that $1 \neq g \in G$ and $g=c_{1} \ldots c_{s}$ is the decomposition of g into its disjoint non-trivial cycles such that $\left|c_{i}\right|=l_{i}$ for $1 \leq i \leq s$. Then either
(i) $l:=l_{1}=l_{2}=\cdots=l_{s}$, where l is an odd prime or a power of 2 ;
(ii) $s=2, l_{i}=2$ and $l_{j}=3$ for $1 \leq i, j \leq 2$ and $i \neq j$;
(iii) $s=2, l_{i}=3$ and $l_{j}=6$ for $1 \leq i, j \leq 2$ and $i \neq j$;
(iv) g has a cycle of length 2 and $(s-1)$ cycles of length a power of 2 for $s \geq 2$.
Moreover, the order of g is either an odd prime, a power of 2 or 6 . Otherwise, g is a cycle of length 9 or $2 p$, where p is an odd prime.

Proof. Let $1 \neq g \in G$. Then by Lemma 2.1, the movement of g, move (g), is the size of the subset $\Gamma(g)$ consisting of every second point of every cycle g, that is, $\operatorname{move}(g)=\sum_{i=1}^{s}\left\lfloor l_{i} / 2\right\rfloor$. For each $1 \leq t \leq s$, we consider the element $h=g^{l_{t}}$ of G and compare the movement of h with the movement of g. As
above, we have

$$
\operatorname{move}(h) \leq \sum_{j \neq t}\left\lfloor l_{j} / 2\right\rfloor<\sum_{i=1}^{s}\left\lfloor l_{i} / 2\right\rfloor=\operatorname{move}(g)
$$

We now consider the following two cases:
Case 1. Let move $(g)=m-1$, then $h=1$.
Hence, we must have $l:=l_{1}=l_{2}=\cdots=l_{s}$. Suppose now that l is not a power of 2 , and let p be an odd prime such that $l=p k$ for some positive integer k. Then by comparing the movement of g and its power g^{k} we obtain

$$
s\lfloor l / 2\rfloor=\operatorname{move}(g)=\operatorname{move}\left(g^{k}\right)=s k \frac{p-1}{2}
$$

It can be easily verified that $\left\lfloor\frac{k p}{2}\right\rfloor=k(p-1) / 2$ if and only if $k=1$, and so $l=p$.
Case 2. Let $\operatorname{move}(g)=m$, then $\operatorname{move}(h)=m-1$ or $h=1$.
We first suppose that $\operatorname{move}(h)=m-1$. Then with new enumeration we can assume that $h=c_{1} c_{2} \ldots c_{s^{\prime}}$, where $s^{\prime}<s$ and $s^{\prime}+1 \leq t \leq s$. Therefore,

$$
\operatorname{move}(g)=\operatorname{move}(h)+\sum_{i=s^{\prime}+1}^{s}\left\lfloor\frac{l_{i}}{2}\right\rfloor
$$

Since move $(g)=\operatorname{move}(h)+1$, we must have $t=s=s^{\prime}+1$ and also $l_{t}=2$ or 3 . Again with suitable enumeration we can suppose that $h=c_{1} \ldots c_{t-1} c_{t+1} \ldots c_{s}$, where $\operatorname{move}(h)=m-1$. By Case 1 , we have $l:=l_{1}=\cdots=l_{t-1}=l_{t+1}=$ $\cdots=l_{s}$ where l is an odd prime or a power of 2 . It is straightforward to verify that $s=2, l_{i}=2$ and $l_{j}=3$ for $1 \leq i, j \leq 2$ and $i \neq j$.

In the second case we may assume that $h=1$. Then we must have $l:=l_{1}=l_{2}=\cdots=l_{s}$. Suppose now that l is not a power of 2 , and let p be an odd prime such that $l=p k$ for some positive integer k. Then we obtain that

$$
\operatorname{move}(g)=s\left\lfloor\frac{p k}{2}\right\rfloor, \quad \operatorname{move}\left(g^{k}\right)=s k \frac{p-1}{2}
$$

It can be easily shown that move $\left(g^{k}\right)<m-1$ for $k \geq 4$, a contradiction. So, we may assume that $k<4$. For $k=1$, we have $\operatorname{move}(g)=\operatorname{move}\left(g^{k}\right)$ and $l=p$. Now, if $k=2$, then we have $\operatorname{move}(g)=s p$ and $\operatorname{move}\left(g^{k}\right)=s(p-1)$. This implies that $s=1$ and $l=2 p$, that is, g is a cycle of length $2 p$. Finally, if $k=3$ and $p \neq 3$, then move $\left(g^{p}\right)<m-1$, a contradiction. Thus $p=3$. It follows that move $(g)=4 s$ and $\operatorname{move}\left(g^{k}\right)=3 s$, and this implies that $s=1$ and $l=9$, that is, g is a cycle of length 9 .

In the second case we may assume that move $(h)=\operatorname{move}\left(g^{l_{i}}\right)=m-1$ and $h=g^{l_{j}}=1$ for some $1 \leq i, j \leq t$ and $i \neq j$. As above, we can conclude that g is either $(s-1)$ cycles of length a power of 2 and a cycle of length

2 for $s \geq 2$, or a cycle of length 6 and a cycle of length 3 . The result now follows.

3. THE PROOF OF THEOREM 1.2

In this section we suppose that m is a positive integer and G is a transitive permutation group on a set Ω of size n with bounded movement equal to m, such that G is not a 2-group but in which every non-identity element has the movement m or $m-1$. If for every $1 \neq g \in G$, move $(g)=m$ then G has constant movement were classified in [2]. So, in the rest of this section we can assume that G has at least one element of movement $m-1$. We also suppose that p is the least odd prime dividing $|G|$.

Lemma 3.1. The groups $G=D_{18}$ and $G=\mathbb{Z}_{9}$ act transitively on a set of size $n=9$ and in this action every non-identity element has movement 4 or 3 .

Proof. Let $M:=\langle\alpha\rangle$ and $N:=\langle\beta\rangle$ be two cyclic permutation groups on the set $\Omega=\{1,2, \ldots, 9\}$, where $\alpha=(12 \ldots 9)$ is a cycle of length 9 and $\beta=(13)(49)\binom{5}{8}\left(\begin{array}{l}67\end{array}\right)$ is four cycles of length 2 . It is straightforward to verify that $M \cong \mathbb{Z}_{9}$ and $D_{18} \cong\langle M, N\rangle$. Since $M \leqslant G$ act transitively on a set Ω, so G is a transitive permutation group on a set Ω. Let $1 \neq g \in M$, then it is easy to see that g has order 3 or 9 . Suppose that $\Gamma(g)$ consist of every second point of every cycle of g. If $o(g)=9$ then g is a cycle of length 9 and hence $\left|\Gamma(g)^{g} \backslash \Gamma(g)\right|=4$, that is, move $(g)=4$. Now, if $o(g)=3$ then g has three cycles of length 3 and hence $\left|\Gamma(g)^{g} \backslash \Gamma(g)\right|=3$, that is, move $(g)=3$. Let $1 \neq g \in\langle M, N\rangle, g \notin M$ and $g \notin N$. Then g has four cycles of length 2 and similarly, $\operatorname{move}(g)=4$. Also we know that $\operatorname{move}(\beta)=4$. This implies that every non-identity element of G has movement 4 or 3 .

Lemma 3.2. The group $G=\mathbb{Z}_{2 p}$ act transitively on a set of size $2 p$, where p is an odd prime, and in this action every non-identity element has movement p or $p-1$.

Proof. Let $1 \neq g \in G$. Then it can be easily shown that g has order 2 , p or $2 p$. Suppose that $\Gamma(g)$ consist of every second point of every cycle of g. If $o(g)=2$ then g has p cycles of length 2 and hence $\left|\Gamma(g)^{g} \backslash \Gamma(g)\right|=p$, that is, move $(g)=p$. If $o(g)=p$ then g has two cycles of length p and hence $\left|\Gamma(g)^{g} \backslash \Gamma(g)\right|=2 \frac{p-1}{2}=p-1$, that is, $\operatorname{move}(g)=p-1$. Finally, if $o(g)=2 p$ then g is a cycle of length $2 p$ and similarly, move $(g)=p$. It follows that every non-identity element of G has movement p or $p-1$.

Lemma 3.3. The group $G=D_{2 n}$ act transitively on a set of size $n=2 p$, where p is an odd prime, and in this action every non-identity element has movement p or $p-1$.

Proof. Let $M:=\langle\alpha\rangle$ and $N:=\langle\beta\rangle$ be two cyclic permutation groups on the set $\Omega=\{1,2, \ldots, 2 p\}$, where $\alpha=(12 \ldots 2 p)$ is a cycle of length $2 p$ and $\beta=(13)(42 p) \ldots(p+1 p+3)$ is $(p-1)$ cycles of length 2 . It is straightforward to verify that $G=D_{2 n} \cong\langle M, N\rangle$. Since $M \leqslant G$ act transitively on a set Ω, so G is a transitive permutation group on a set Ω. Suppose now that $M_{1} \subset M$ consists precisely of those elements whose form is a cycle of length $2 p, M_{2} \subset M$ consists precisely of those elements whose form is two cycles of length p and $M_{3} \subset M$ consists precisely of those elements whose form is p cycles of length 2. Consequently, M_{1}, M_{2} and M_{3} are a partition of $M \backslash\{1\}$. By Lemma 3.2, every element of M_{1} and M_{3} has the movement equal to p and every element of M_{2} has the movement equal to $p-1$ and also $\operatorname{move}(\beta)=p-1$. Let $1 \neq g \in G$, $g \notin M$ and $g \notin N$. Then either $g \in M_{1} \beta$ or $g \in M_{2} \beta$ and or $g \in M_{3} \beta$. If $g \in M_{1} \beta$ or $g \in M_{3} \beta$, then g has p cycles of length 2 , that is, move $(g)=p$. If $g \in M_{2} \beta$, then g has $(p-1)$ cycles of length 2 , that is, move $(g)=p-1$. These implies that every non-identity element of G has movement p or $p-1$.

Let H be cyclic of order n and $K=\langle k\rangle$ be cyclic of order m and suppose r is an integer such that $r^{m} \equiv 1(\bmod n)$. For $i=1, \ldots, m$, let $\left(k^{i}\right) \theta: H \rightarrow H$ be defined by $h^{\left(k^{i}\right) \theta}=h^{r^{i}}$ for h in H. It is straightforward to verify that each $\left(k^{i}\right) \theta$ is an automorphism of H, and that θ is a homomorphism from K to $\operatorname{Aut}(H)$. Hence the semi-direct product $G=H \rtimes K$ (with respect to θ) exists and if $H=\langle h\rangle$, then G is given by the defining relations:

$$
h^{n}=1, \quad k^{m}=1, \quad k^{-1} h k=h^{r}, \quad \text { with } r^{m} \equiv 1(\bmod n) .
$$

Here every element of G is uniquely expressible as $h^{i} k^{j}$, where $0 \leq i \leq n-1$, $0 \leq j \leq m-1$. Certain semi-direct products of this type (as a permutation group on a set Ω of size n) also provide examples of transitive permutation groups where every non-identity element has the movement m or $m-1$, and the bound in Lemma 1.1, is not attained (as the following lemma). We note that, if $n=q$, a prime, then by [15, Theorem 3.6.1] this group G is a subgroup of the Frobenius group $A G L(1, q)=\mathbb{Z}_{q} \rtimes \mathbb{Z}_{q-1}$.

Lemma 3.4. Let G be a semi-direct product of the Frobenius group $G=$ $\mathbb{Z}_{q} \rtimes \mathbb{Z}_{q-1}$, where $q:=2 p+1$ is an odd prime, denote a group defined as above of order $q(q-1)$. Then G act transitively on a set of size $n=q$ and in this action every non-identity element has movement p or $p-1$.

Proof. By the above statement, the group G is a Frobenius group and has up to a permutational isomorphism a unique transitive representation of degree q on a set Ω. Let $g \in G ; o(g)=q$. If $\Gamma(g)$ consists of every second point of the unique cycle of g, then $\operatorname{move}(g)=\frac{q-1}{2}=p$. Since the order of each element of G is either $2, p, q$ or $2 p$, so by Lemma 3.2 , every non-identity element has movement p or $p-1$.

Now, we are ready to complete the proof of the main theorem:
Let G, Ω and m be as in Theorem 1.2 with $n:=|\Omega|$ and $\operatorname{move}(G)=m$. Now, we consider two cases:

Case 1. n is the maximum possible degree as in Lemma 1.1.
A transitive permutation group of degree $3 m$ (which is the bound of Lemma 1.1, for $p=3$) with bounded movement equal to m, were classified in [10] and the examples are as follows:
(a) $G=S_{3}, m=1$;
(b) $G=A_{4}$ or $A_{5}, m=2$;
(c) G is a 3 -group of exponent 3 .

It can be easily verified that the movements of all of these groups are not two consecutive integers, which contradicts our hypothesis.

But for $p \geq 5$, by [7, Theorem 1.2], one of the following holds:
(1) $|\Omega|=p, m=(p-1) / 2$ and $G=\mathbb{Z}_{p} \rtimes \mathbb{Z}_{2^{a}}$, where $2^{a} \mid(p-1)$ for some $a \geq 1$;
(2) $|\Omega|=2^{s} p, m=2^{s-1}(p-1), 1<2^{s}<p$, and $G=K \rtimes P$ with K a 2 -group and $P=\mathbb{Z}_{p}$ is fixed point free on $\Omega ; K$ has p-orbit of length 2^{s}, and each element of K moves at most $2^{s}(p-1)$ point of Ω;
(3) G is a p-group of exponent bounded in terms of p only.

By [2, Theorem 1.1], all group in part (1), part (3) and the part (2), when p is a Mersenne prime and each non-identity element of K moves exactly $2^{s}(p-1)$ point of Ω, are examples in which every non-identity element has the same movement equal to m. We will show that the other groups in part (2) have some elements whose movement are less than $m-1$, which contradicts our hypothesis. In part(2), with $s \geq 2$, when p is not a Mersenne prime and each element of K moves at most $2^{s}(p-1)$ point of Ω, since every non-identity element of $G=K . P$ has movement m or $m-1$, there exist $k \in K$ with $(p-1)$ cycles of length 2^{s}. We consider the element $k k^{g}$ of K. This element is fixed point free on Ω and so has movement $p .2^{s-1}$, which is a contradiction. Also, for $s=1$, according to the [7, Lemma 3.3] we can easily achieve the same contradiction.

Case 2. n is not the maximum possible degree as in Lemma 1.1.
By Proposition 2.2, each non-trivial permutation of G in its disjoint cycle representation has either a cycle of length $2 p$, a cycle of length 9 , a cycle of length 2 and a cycle of length 3 , a cycle of length 3 and a cycle of length 6 , $(s-1)$ cycles of length a power of 2 and a cycle of length 2 for $s \geq 2$, multiple cycles of length p, or multiple cycles of length a power of 2 , namely $g_{2 p}, g_{9}$, $g_{2,3}, g_{3,6}, g_{2^{a}, 2}, g_{p}, g_{2^{a}}$, respectively.

If G consists precisely of those elements whose form is $g_{2^{a}}$ or g_{p}, then by [2], n is the maximum possible except the case when the groups S_{4}, A_{4} and
A_{5} act transitively on a set of size 4 and 5 , respectively. We may only consider some of the cases which are satisfy in our assumptions. For example, if G is a cyclic group generated by $g_{2 p}$ or g_{9}, then by Lemma 3.1 and Lemma 3.2, we have $G=\mathbb{Z}_{2 p}$ or \mathbb{Z}_{9}. If G consists precisely of those elements whose form is either g_{9}, g_{p}, or $g_{2^{a}}$, then it can be easily verified that $G=D_{18}$. If G consists precisely of those elements whose form is either $g_{2 p}, g_{p}$ or $g_{2^{a}}$, then G is the groups as in Lemma 3.3 and Lemma 3.4. Finally, if G consists precisely of those elements whose form is either $g_{2,3}, g_{2^{a}}$ or g_{p}, then it can be easily shown that $G=S_{5}$. These completes the proof of Theorem 1.2.

REFERENCES

[1] M. Alaeiyan, Improvement on the bounds of permutation groups with bounded movement. Bull. Aust. Math. Soc. 67 (2003), 246-257.
[2] M. Alaeiyan and H.A. Tavallaee, Permutation groups with the same movement. Carpathian J. Math. 25 (2009), 147-156.
[3] M. Alaeiyan and S. Yoshiara, Permutation groups of minimal movement. Arch. Math. 85 (2005), 211-226.
[4] R. Brandl, Finite groups all of whose elements are of prime power order. Bull. U. M. I. 5 (1981), 491-493.
[5] J.R. Cho, P.S. Kim and C.E. Praeger, The maximal number of orbits of a permutation groups with bounded movement. J. Algebra 214 (1999), 625-630.
[6] B. Fein, W. Kantor and M. Schacher, Relative Brauer groups. J. Reine Angew. Math. 328 (1981), 39-57.
[7] A. Hassani, M. Alaeiyan (Khayaty), E.I. Khukhro and C.E. Praeger, Transitive permutation groups with bounded movement having maximal degree. J. Algebra 214 (1999), 317-337.
[8] G. Higman, Finite groups in which every element has prime power order. J. Lond. Math. Soc. 32 (1957), 335-342.
[9] B. Huppert, Endliche Gruppen I. Springer-Verlag, Berlin-New York, 1967.
[10] A. Mann and C.E. Praeger, Transitive permutation groups of minimal movement. J. Algebra 181 (1996), 903-911.
[11] C.E. Praeger, On permutation groups with bounded movement. J. Algebra 144 (1991), 436-442.
[12] C.E. Praeger, Movement and separation of subsets of points under group action. J. Lond. Math. Soc. 56(2) (1997), 519-528.
[13] J.J. Rotman, An Introduction to the Theory of Groups. 3rd ed., Allyn and Bacon, Boston, 1984.
[14] M. Suzuki, On a class of doubly transitive groups. Ann. of Math. 75 (1962), 105-145.
[15] T. Tsuzuku, Finite Groups and Finite Geometries. Cambridge University Press, 1982.

