
SURFACTANT EFFECT
ON RISING BUBBLES – A THIRD ORDER THEORY

GELU PAŞA

We study the surfactant effects on the motion of an air-bubble rising in a vertical
capillary tube of small radius R, filled with a viscous fluid and sealed at one end.
The thickness b of the thin film behind the bubble is small compared with R. We
give a theoretical estimate of b, by using an expansion of order O(b/R)3 of some
functions appearing in the mathematical model. An upper bound of the rising
velocity U is given in terms of b and other physical data of the problem. The
obtained estimates are proving the thinning and the delay effect due to the sur-
factant presence on the bubble interface: b and U are smaller, compared with the
“clean” case. Our results are consistent with previous experimental and numeri-
cal data. In the case of horizontal (infinite) capillary tubes we have the opposite
effect of surfactant, proved theoretically by Daripa & Paşa (2010).
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1. INTRODUCTION

Gas-bubbles flow through viscous fluids was studied in many papers over
the years, related with fundamental and technological problems. Davies and
Taylor (1950) studied this problem, related with the submarine technology.
Saffman and Taylor (1958) obtained important results in this problem, re-
lated with oil recovery technology and fingering phenomena in displacement
processes. The fingering problem in Hele-Shaw displacement was studied also
by Park and Homsy (1984). Experimentally studies on the long air-bubbles in
vertical cylindrical tubes have been carried on by White and Beardmore (1962)
and Zukoski (1966). Potential analysis was used to study two-dimensional bub-
bles in tubes, by Couet et al. (1985) and Daripa (2000). Schwartz et al. (1986)
studied the displacement of a viscous fluid by a gas-bubble in capillary tube.
Fabre and Line (1992) given a review of long bubble propagation in capillary
tubes. The case of angular capillary tubes was considered by Bico & Quere
(2002). Bubbles flow in non-circular cross-section tubes has been studied by
Liao & Zhao 2003 and Clanet et al. (2004). In all the above papers, the surface
tension γ on the bubble interface was considered constant.
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We consider here a long air-bubble rising with a velocity U in a vertical
tube of small radius R. In the case of a constant surface tension γ on the
bubble interface, a seminal paper was given by Bretherton (1961). Reinelt
(1987) reinforced the results of Bretherton. The tube is filled with a liquid
of viscosity µ and is sealed at one end. In both papers was pointed out that
the shape of the cap and the base of the bubble are independent of the size
of the bubble. The bubble can be considered almost cylindrical, with radius
βR. The thickness of the layer behind the bubble, between the wall of the
tube and the bubble interface, is b = R− βR = R(1− β). The front meniscus
of the air-bubble is displacing a quantity of fluid. The tube being sealed, this
quantity of liquid must flow down, under the effect of gravity, exactly through
the thin layer between the bubble interface and the tube wall.

We study here the above problem in the case of a variable surface tension
γ, due to the small traces of surfactant on the bubble interface.

The important forces acting in this problem are: surface tension, viscous
force, gravity and inertia. Associated with these forces we have the Reynolds
number Re, the capillary number Ca and the Bond number B given by

Re = ρ U R/µ, Ca = µU/γ, B = ρ gR2/γ,

where ρ is the density of the fluid neglecting the density of the air and g is
the gravitational acceleration. At a constant rising velocity U , the experiment
of Bretherton (1961) suggests that Reynolds number is negligible, then only
parameters Ca and B appear in the problem. Bretherton (1961) used matched
asymptotic expansion in terms of small Ca and obtained the expansion

(1) B − 0.842 ∼ 1.25Ca
2
3 + 2.24Ca

1
3 ,

therefore the bubble is not rising if B < 0.842.
A very simple estimate of the values of B which allows the rising of a

spherical bubble can be obtained in terms of gravitational and surface tension.
The bubble is pushed up by the force (4πR3/3)ρg. On the other hand, the
surface tension γ is acting on the circumference 2πR, then the total “opposite”
force is 2πRγ. The rising conditions is

(2)
4πR3

3
ρg > 2πRγ ⇒ B > 1.5,

and we see that is independent of the capillary number Ca. In the case of a
long bubble, considered here, we don’t know the total volume of the bubble,
then the above idea is not useful. However, the formula (2) is an “empiri-
cal” justification for the existence of a rising condition in terms of the Bond
number B.
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White and Breadmore (1962), using some experimental data (cited also
by Clanet et al. (2004)), obtained the relation

(3) U = C · ρgR2/µ,

that means B = C−1(Ca), whit C ≈ 0.038. The value of value of the constant
C monotonically decreases with decreasing Bond number B.

Even in the paper of Bretherton (1961) was pointed out that some the-
oretical results are not in good agreement with the experimental data – the
experimental thickness of the thin film was smaller, compared with the theo-
retical values. The formula (1) was not verified qualitatively by Bretherton
in the case Ca < 10−5. He considered the quantitative discrepancies as due
to the traces of surfactant on the bubble surface, which are giving a thinning
effect on the thin layer behind the bubble. The basic models for the surfac-
tant effects on the fluid flow can be found in the book of Levich (1962). As
we pointed above, the main result of our paper is a theoretical explanation of
this disagreement. We give a third order precision theory, neglecting the terms
O(b4), and obtain the thinning and the delay effect produced by the surfactant
presence on the bubble interface. The thinning effect of surfactant in the case
of rising bubbles was confirmed by the numerical and experimental results of
Amatroushi & Borhan (2004). The surface tension is considered variable, in
terms of the surfactant concentration on the bubble surface. We consider here
that the surfactant is not soluble in the bulk (the viscous fluid in the tube).

We emphasize that in the case of horizontal tubes, the opposite effect,
due also to the surfactant presence on the bubble interfaces, was supposed by
Bretherton. The case of bubble flow in in horizontal capillary tubes is totally
different. There it has been proved that the interfacial surfactant thickens the
thin film in comparison to the clean case. This case is quite similar with the
Landau–Levich coating problem: a plate is moving out from a bath of viscous
liquid and a thin layer is adhering on it. The traces surfactant on the bath
surface are giving the same thickening of the adhering film. In both problems
we mention the theoretical contributions of Daripa & Paşa (2009, 2010) and
numerical and experimental contributions of Park (1990) and Ratulowski &
Chang (1989, 1991).

The vertical case which we study here is different. As we pointed above,
the liquid displaced by the front meniscus of the rising bubble must flow back
down exactly through the thin film between the bubble surface and the tube
walls, under the effect of gravity. On the contrary, in the horizontal tubes, the
thin film is almost at rest and the gravity effect is neglected.

The paper is laid out as follows. In Section 2 we give an approximate
value of b, U in the clean case. The surfactant effect is described in Section 3
and the thinning and the delay effects are proved. Finally, we conclude in
Section 4.
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2. THE APPROXIMATE VALUES OF b, U IN THE “CLEAN” CASE

In Figure 1 is given a 2D axisymmetric gas-bubble in a capillary tube.
We use first a Cartesian frame: the x-axis is the right wall of the tube and is
pointed upward. The y-axis is orthogonal to the right wall and pointed to the
tube center. The gravity is parallel with the x-axis and pointed downward.
b denotes the (constant) thickness of thin liquid layer between the bubble
surface and the tube walls, U is the rising velocity and R is the tube radius.
The bubble surface is “divided” in three regions: the region AB of the front
meniscus, the intermediate region BC and the flat region CD, where the film
thickness is constant. The free surface of the bubble in the transition region
BC is denoted by h(x). In this section, we consider the case of a constant γ,
i.e., the clean case.

Fig. 1. Section of a bubble in a vertical tube. Cartesian co-ordinates.

In the transition zone BC, we use the lubrication approximation

(4) uyy =
1
µ

(px + ρg), py = 0.

Both above equations must be solved subject to the following boundary con-
ditions for the “clean” case (see also Daripa and Paşa, 2010)

(5) u(y = 0) = 0, uy(y = h(x)) = 0, and p(y = h(x)) = −γhxx.

The solution of the problem (4)–(5) is given by

(6) u =
1
µ

(px + ρg)(y2/2− yh).
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The flux Q(x) in the thin layer behind the bubble in the point x ∈ BC is
given by

(7) Q(x) =
1
µ

(px + ρg)(−h3/3).

The matching procedure, used by Bretherton (1961), means that the
solution (6) can approximate the flow also near the point C for the flat region.
Therefore we use the above expression of the flux near the point C where the
curvature hxx of the free surface of the layer becomes zero and h ≈ b. The
thickness of the bubble is constant in the flat region. Since Q(C) = Q(−∞)
due to incompressibility, we obtain

(8) Q(−∞) = −ρgb3

3µ
.

On the other hand, in the front of the bubble we have a flux of fluid with
speed U through the area of radius (R− b). The tube is sealed, therefore the
displaced fluid must flow down, through the thin layer between the bubble
surface and the tube walls. Then we obtain the following second expression
for the flux per unit (circumferential) length

(9) Q(∞) = −U [π(R− b)2]/(2πR) ≈ −β2 UR

2
,

where

(10) β = 1− b/R = 1− δ.

Since Q(−∞) = Q(∞) we get the following expression of U obtained by
Bretherton (1961)

(11) U =
(

ρgR2

µ

)
2(1− β)3

3β2
=

(
ρgR2

µ

)
2δ3

3(1− δ)2
.

We consider now the cylindrical co-ordinates used by Reinelt (1987), for
describing the axisymmetric flow in the transition region. The Ox axis is now
the upward symmetry axis of the tube (which is different from the convention
used in the Cartesian frame before) and r is the radial distance from the tube
center. The gravity force is downward. The flow equations in the transition
region BC are

(12)
1
r

d

dr
(rur) =

1
µ

(px + ρg), pr = 0,

whit boundary conditions

(13) u(r = R) = 0 and ur(r = R− b) = 0.
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The solution of the the problem (12)–(13) in the flat region CD, where px = 0,
is given by

(14) u(−∞, r) = −ρg

4µ
{R2 − r2 + 2(R− b)2 ln(r/R)}.

Therefore, the flux far downstream (far from the front meniscus, i.e., through
the flat region CD) is then

(15) Q(−∞) =
∫ 2π

0

∫ R

R−b
u(−∞, r)r dr dθ = −πρg

8µ
R4 E(β),

where

(16) E(β) = 1− 4β2 + 3β4 − 4β4 ln(β).

As in the above formula (9), the liquid displaced by the front meniscus of the
bubble (with rising velocity U), must flow down through the thin film, then
we get the second expression of the flux

(17) Q(∞) = −2π

∫ R

R−b
Ur dr = −Uπ(R− b)2.

Equating (15) and (17) and simplifying, we obtain the formula of Reinelt
(1987)

(18) U =
ρ g R2

µ

(
E(β)
8β2

)
=

ρ g R2

µ

(
E(1− δ)
8(1− δ)2

)
.

Remark 1. Consider the segment β ∈ (0, 1), then E(β) given by (16) is
positive. Indeed, we have

E′(β) = (−8β)D(β), D(β) = 1− β2 + 2β2 ln(β), D′(β) = (4β) ln(β),

D′(β) < 0, D(0) = 1, D(1) = 0 ⇒ D(β) > 0.

It follows E′(β) < 0, then E(β) is strictly decreasing function. We have E(0) =
1, E(1) = 0, therefore, E(β) > 0 in the segment β ∈ (0, 1). �

Both formulas (18) and (11) are giving approximate relations between the
rising velocity U and the undimensional film thickness δ = b/R, because we
used the lubrication approximation. As we pointed above, we expect a small
value for δ. Therefore, in a small interval near the origin, we expect that (18)
and (11) are giving two exact relations between U and δ. From here we obtain
an approximate value of b, as follows.

In the formula (16) of the function E(β) is appearing ln(β). As we expect
to have δ < 1, we can use an expansion of this last function in terms of δ.
Recall (10). We use the third order expansion, because in (11) only δ3 appears.
We have

(19) ln(β) = ln(1− δ) ≈ −δ + δ2/2− δ3/3,
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3E(1− δ) ≈ 3
[
1− 4(1− δ)2 + (1− δ)4{3− 4(−δ + δ2/2− δ3/3)}

]
=(20)

= −12δ2 + 64δ3 + O(δ4).

Consider the following polynom P (δ):

(21) P (δ) = −12δ2 + 64δ3 − 16δ3 = 12δ2(4δ − 1),

therefore, 3E(1− δ)− 16δ3 = P (δ) + O(δ4). By equating (18) and (11) in the
third approximation (that means neglecting the terms O(δ4)) we get P (δ) = 0,
therefore

(22) δ ≈ 0.25, β ≈ 0.75, b ≈ R/4.

The above theoretical estimate was obtained by using the expansion (19).
It is not an exact value of b, but we use it to prove the thinning effect of
surfactant. The expansion of ln(1 − x) is accurate only for small value of x.
We give here some numerical values of error function ERR(x) = ln(1 − x) −
(−x + x2/2− x3/3):
(23)
ERR(0.25) = −0.063723, ERR(0.2) = −0.040476, ERR(0.1) = −0.010027.

Therefore, in our case the relative error is 0.05/0.25 ≈ 20%.
We use the result (22), the formula (11) and obtain the approximate

value of the rising velocity U

(24) U ≈ 0.0184
(

ρgR2

µ

)
.

We can see that the value 0.0184 is less than the experimental value
C = 0.038 (see White & Beardmore (1962)). Thus our approximation is
underestimating the rising velocity in comparison with the experimental value.

3. THE THINNING EFFECT OF SURFACTANT

In the presence of interfacial surfactant with no surfactant in the bulk,
the surfactant concentration on the interface will be not constant. Due to the
motion of the bubble, surfactant along the interface will be swept downstream
along the interface. This will cause surfactant concentration to increase and
hence surface tension γ to decrease away from the front end of the bubble
along its interface. Since the Ox axis is upward (see Figure 1), it follows that
γx > 0 along the interface. The thickness of the layer between the bubble and
the wall of the tube will be denoted here by bS and the rising velocity by US

(subscript S stands for surfactant case). We use the notations

βS = 1− bS , δS = bS/R.
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As before, the equations in the transition region BC are same as (4) but
the boundary conditions are now given by the relations (see Daripa & Paşa
(2010), Ratulowski & Chang (1990), Park (1991))

(25) u(y = 0) = 0, uy(y = h(x)) =
γx

µ
and p(y = h(x)) = −γhxx.

The solution of the system (4)–(5) is given by

(26) u =
1
µ

(px + ρg)(y2/2− yh) +
γx

µ
y.

From this, the flux Q(x) =
∫ h(x)
0 u(y)dy through the film at an arbitrary point

x in the transition region BC is obtained as

(27) Q(x) =
1
µ

(px + ρg)(−h3/3) +
γx

µ

h2

2
.

The solution (26) and the flux (27) are valid in the transition region and hence
they hold approximately in the overlap region with the flat region. Consider
a point C− situated below and near the point C. The curvature hxx(C−) of
the free surface at the point C− is approximately zero and h(C−) = bS (since
thickness of the film is constant in the flat region). Moreover, in general γx

is not zero in the thin film region due to the tendency of surfactant to get
advected downstream. Therefore, γx(C−) 6= 0 and flux through the point C−

behind the front meniscus is given by

(28) Q(C−) = −
ρgb3

S

3µ
+

γx(C−)
µ

b2
S

2
.

The front meniscus of the bubble is displacing a quantity of fluid with the
rising velocity US on the area of radius (R − bS). Then we have the second
expression of the flux through the thin layer behind the bubble, given by the
formula (9) with US instead of U . Equating (28) and (9) with US instead of
U (that means mass conservation), we get

(29) US =
(

ρgR2

µ

)
2(1− βS)3

3β2
S

− γx(C−)R
µ

· (1− βS)2

β2
S

Remark 2. The above formula gives us a criterion for positive rising ve-
locity

(30) US > 0 ⇔ γx(C−) <
2R(1− βS)ρg

3
. �

Comparing (11) with (29) (recall γx(C−) > 0), we obtain

(31) US <

(
1− βS

1− β

)3 (
β

βS

)2

U.
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For the axisymmetric flow in the transition region, the governing equa-
tions in cylindrical co-ordinates (already introduced previously) are same as
(12). The boundary conditions on the flat region of (CD) of the interface are

(32) u(r = R) = 0, ur(r = R− bS) =
γx

µ
,

because here the curvature hxx is zero. Then the derivative px of the pressure
is also zero. As we pointed before, along the interface of the thin film, γx is
not zero, because the surfactant is swept to the rear meniscus. Recall also
that that the bubble is infinite long. From the solution of the problem (12) +
(32) with px = 0 in the thin film region (where the curvature is zero), we get
the solution near the point C− (defined after the relation (27))
(33)

u(C−, r) = −ρg

4µ

{
R2 − r2 + 2(R− bS)2 ln

( r

R

) }
+

γx(C−)
µ

(R− bS) ln
( r

R

)
.

Therefore, the flux near the point C−, i.e., through the flat region CD,
is given by

(34) Q(C−) = −πρg

8µ
R4E(βS) +

πR3γx(C−)
2µ

G(βS),

where βS = (R− bS)/R and

G(βS) = −βS + β3
S − 2β3

S lnβS .

Far up in front of the bubble, we have a flux of fluid with velocity US on
the circular area of the radius (R− bS). This quantity of fluid must flow down
through the thin layer of thickness bS , and the corresponding flux is given by
−USπ(R− bS)2. Equating with the relation (34) we get

(35) US =
(

ρgR2

µ

)
E(βS)
8β2

S

− γx(C−)R
2µ

· G(βS)
β2

S

.

Remark 3. The function G(βS) is positive in (0, 1). Indeed, we have

G(βS) = βSH(βS), H(βS) = −1 + β2
S − 2β2

S lnβS .

Since dH/dβS = −4 ln(βS) > 0, ∀βS ∈ (0, 1), we conclude that H(βS) is
negative in (0, 1), because H(0) = −1 and H(1) = 0. Therefore, we get

(36) G(βS) < 0, ∀β ∈ (0, 1). �

We consider that (29) and (35) are giving the same rising velocity US ,
for small bS , therefore we get

(37)
ρgR2

µ

(
E(βS)

8
− 2(1− βS)3

3

)
=

γx(C−)R
2µ

(
G(βS)− 2(1− βS)2

)
.
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Remark 4. We obtain the thinning effect as follows. The right hand side
of the above relation (37) is negative, because γx > 0, G(βS) < 0 (see (36))
and (1 − βS)2 > 0. We recall the polynom P (δ), given by the relation (21),
and from (37) we get

(38) 3E(1− δS)− 16δ3
S ≈ P (δS) = 12δ2

S(4δS − 1) < 0 ⇒ δS < 1/4 = δ.

This last relation is giving the thinning effect due to the traces of surfactant
existing on the bubble surface. �

Remark 5. The delay effect follows from the relation (11) and (29). In-
deed, from (29) we get

(39) US <

(
ρgR2

µ

)
2(δS)3

3(1− δS)2
,

because γx > 0. We also have

δS < δ ⇒ (δS)3

(1− δS)2
<

(δ)3

(1− δ)2
,

therefore the relation (11) is giving US < U . �

4. CONCLUSIONS

In this paper we study some aspects of the flow of a finite but very long
air-bubble rising in a vertical capillary tube which is closed at one end. The
fluid displaced by the front meniscus of the bubble must flow down, through
the thin layer of thickness b between the bubble surface and the tube wall;
the gravity effect is not neglected. We prove analytically that the presence
of surfactant on the bubble interface gives a thinning and a delay effect: the
thickness of the liquid layer behind the bubble and the rising velocity of the
bubble are smaller, compared with the “clean” case (see Remarks 4 and 5). An
approximate value of the rising velocity for the clean case is also given which
vary widely depending on the radius of the tube as has been also observed
in White & Beardmore (1962). Our result is obtained by using the expansion
(19), where we neglected the terms O(δ4), δ = b/R.

The obtained effects of interfacial surfactant are confirmed by previous
experimental and numerical results.

In the case of bubbles moving in horizontal capillary tubes, the fluid in
the thin layer behind the bubble is at rest and the gravity is neglected. In this
case, the exactly opposite effect of surfactant appears, namely thickening of
the thin film (see Bretherton (1961), Park (1991), Ratulowski & Chang (1990),
Daripa & Paşa (2010)).
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