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The Hermite-Hadamard inequality asserts that for every continuous con-
vex function f defined on an interval [a, b] and every Borel probability measure
µ on [a, b] we have

(HH) f (bµ) ≤
∫ b

a
f(x)dµ(x) ≤ b− bµ

b− a
f(a) +

bµ − a
b− a

f(b),

where

bµ =
∫ b

a
xdµ(x)

is the barycenter of µ. See [3] for details.
The aim of this paper is to prove an analogue of Hermite-Hadamard

inequality in the framework of quasi-arithmetic means.
Let I be an interval and ϕ : I → R a continuous increasing function.

The weighted quasi-arithmetic mean associated to ϕ is defined by the formula

M[ϕ] (a, b; 1− λ, λ) = ϕ−1 ((1− λ)ϕ(a) + λϕ(b)) ,

for a, b ∈ I and λ ∈ [0, 1].
The weighted arithmetic mean

A (a, b; 1− λ, λ) = (1− λ) a+ λb

corresponds to ϕ(x) = x, and the weighted geometric mean

G (a, b; 1− λ, λ) = a1−λbλ
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corresponds to ϕ(x) = log x.
Given a pair of continuous increasing functions ϕ : [a, b] → R and ψ :

[c, d]→ R, a function f : [a, b]→ [c, d] is called (M[ϕ],M[ψ])-convex if

f
(
M[ϕ] (x, y; 1− λ, λ)

)
≤M[ψ] (f(x), f(y); 1− λ, λ)

for every x, y ∈ [a, b] and λ ∈ [0, 1].
The theory of

(
M[ϕ],M[ψ]

)
-convex functions can be deduced from the

theory of usual convex functions. Indeed, f is a
(
M[ϕ],M[ψ]

)
-convex function

if and only if ψ◦f◦ϕ−1 is convex. This fact allows us to translate results known
for convex functions into their counterparts for

(
M[ϕ],M[ψ]

)
-convex functions.

We will next consider the case of Hermite-Hadamard inequality. Our approach
is based on the concept of push-forward measure.

Given a Borel probability measure µ (on an interval [a, b]), the push-
forward of µ through a continuous map ϕ : [a, b]→ R is defined by

(ϕ#µ) (A) = µ
(
ϕ−1(A)

)
for every Borel subset A of [ϕ(a), ϕ(b)]. This measure allows the following
change of variable formula∫ b

a
f (ϕ(x)) dµ (x) =

∫ ϕ(b)

ϕ(a)
f(x)dµ

(
ϕ−1(x)

)
.

The barycenter of ϕ#µ is

bϕ#µ =
∫ ϕ(b)

ϕ(a)
xdµ

(
ϕ−1(x)

)
=

∫ b

a
ϕ(x)dµ(x),

so if we put

ξ = ϕ−1 (bϕ#µ)

and

M(ξ) =
b (ϕ(b)− ϕ(ξ))− a (ϕ(a)− ϕ(ξ))

ϕ(b)− ϕ(a)
,

we obtain the identity

(1)
ϕ(ξ)− ϕ(a)
ϕ(b)− ϕ(a)

=
b−M(ξ)
b− a

.

Lemma 1. The barycenter of ϕ#µ verifies the formula

(2) bϕ#µ =
M(ξ)− a
b− a

ϕ(a) +
b−M(ξ)
b− a

ϕ(b).
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Proof. In fact

bϕ#µ =
ϕ(b)− bϕ#µ

ϕ(b)− ϕ(a)
ϕ(a) +

bϕ#µ − ϕ(a)
ϕ(b)− ϕ(a)

ϕ(b)

=
M(ξ)− a
b− a

ϕ(a) +
b−M(ξ)
b− a

ϕ(b).

due to the identity (1). �

Theorem 1 [The Hermite-Hadamard inequality for (M[ϕ],M[ψ])-convex
functions]. Let f : [a, b] → [c, d] be a continuous (M[ϕ],M[ψ])-convex function
and µ be a Borel probability measure on [a, b]. Then

f(ξ) ≤ ψ−1

(∫ b

a
ψ (f(x)) dµ(x)

)
(RHH)

≤M[ψ]

(
f(a), f(b);

ϕ(b)− ϕ(ξ)
ϕ(b)− ϕ(a)

,
ϕ(ξ)− ϕ(a)
ϕ(b)− ϕ(a)

)
,(LHH)

where ξ = ϕ−1 (bϕ#µ) .

Proof. We apply the inequality (HH) to ψ ◦ f ◦ ϕ−1. As we have seen,

(ψ ◦ f) (ξ) =
(
ψ ◦ f ◦ ϕ−1

)
(bϕ#µ)

≤
∫ ϕ(b)

ϕ(a)
ψ

(
f

(
ϕ−1(x)

))
dµ

(
ϕ−1(x)

)
=

∫ b

a
ψ (f(x)) dµ(x)

≤
ϕ(b)− bϕ#µ

ϕ(b)− ϕ(a)
ψ (f(a)) +

bϕ#µ − ϕ(a)
ϕ(b)− ϕ(a)

ψ (f(b))

and the conclusion follows. �

Remark 1. Theorem 1 was proved for
(
A,M[ψ]

)
-convex functions in [1,

Theorem 3.3], under more restrictive conditions. The particular case of (G,A)-
convex functions was proved in [5], while the case of (G,G)-convex functions
appeared in [2] and [4].

We will call the function Φ a support of f if ψ ◦ Φ ◦ ϕ−1 = Ψ, where Ψ
is a support line of the convex function ψ ◦ f ◦ ϕ−1.

Theorem 2. Let f : [a, b] → [c, d] be a continuous (M[ϕ],M[ψ])-convex
function, ψ concave and µ be a Borel probability measure on [a, b]. Then∫ b

a
f(x)dµ(x) ≥ f

(
ϕ−1 (bϕ#µ)

)
= sup

Φ is a support of f

{
ψ−1

(∫ b

a
ψ (Φ(x)) dµ(x)

)}
.
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Proof. The proof is similar to [2, Theorem 3]. Details are left to the reader.
The Hermite-Hadamard type inequalities proved in Theorem 1 are not

just consequences of
(
M[ϕ],M[ψ]

)
-convexity, but also characterize it. The con-

verse of Hermite-Hadamard inequality for (M[ϕ],M[ψ])-convex functions reads
as follows:

Theorem 3. Let I, J be two intervals and f : I → J a continuous
function. Assume that ϕ : I → R and ψ : J → R are continuous increasing
functions. If for every compact subinterval [a, b] of I and for every atomless
Borel probability measure µ on [a, b] the function f satisfies either the inequal-
ity (RHH) or (LHH) then f is

(
M[ϕ],M[ψ]

)
-convex.

Proof. If (RHH) holds, by Jensen’s inequality we conclude that ψ◦f ◦ϕ−1

is convex, hence f is
(
M[ϕ],M[ψ]

)
-convex.

It remains to consider that (LHH) holds. We proceed by reductio ad
absurdum. Assume that f is not

(
M[ϕ],M[ψ]

)
-convex. Then there exists a

subinterval [x, y] ⊂ I and a number ε ∈ (0, 1) such that

(3) f
(
M[ϕ] (x, y; 1− ε, ε)

)
> M[ψ] (f(x), f(y); 1− ε, ε) .

Since f is continuous, the inequality (3) holds on an entire neighbourhood
(ε1, ε2) of ε. We choose (ε1, ε2) the biggest neighbourhood with this property.
Put a = M[ϕ] (x, y; 1− ε1, ε1) and b = M[ϕ] (x, y; 1− ε2, ε2) (a < b). The
continuity of f ensures that

f(a) = M[ψ] (f(x), f(y); 1− ε1, ε1)

and

f(b) = M[ψ] (f(x), f(y); 1− ε2, ε2) .

Since we have (1− t) ε1 + tε2 ∈ (ε1, ε2) for every t in (0, 1), we infer from (3)
that

f
(
M[ϕ] (a, b; 1− t, t)

)
= f

(
M[ϕ]

(
M[ϕ] (x, y; 1− ε1, ε1) ,M[ϕ] (x, y; 1− ε2, ε2) ; 1− t, t

))
= f

(
M[ϕ] (x, y; 1− (1− t) ε1 − tε2, (1− t) ε1 + tε2)

)
> M[ψ] (f(x), f(y); 1− (1− t) ε1 − tε2, (1− t) ε1 + tε2)

= M[ψ]

(
M[ψ] (f(x), f(y); 1− ε1, ε1) ,M[ψ] (f(x), f(y); 1− ε2, ε2) ; 1− t, t

)
= M[ψ] (f(a), f(b); 1− t, t) .
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Thus, it follows∫ b

a
ψ (f(x)) dµ(x)

=
∫ b

a
ψ

(
f

(
M[ϕ]

(
a, b;

ϕ(b)− ϕ(x)
ϕ (b)− ϕ(a)

,
ϕ(x)− ϕ(a)
ϕ(b)− ϕ(a)

)))
dµ(x)

>

∫ b

a
ψ

(
M[ψ]

(
f(a), f(b);

ϕ(b)− ϕ(x)
ϕ(b)− ϕ(a)

,
ϕ(x)− ϕ(a)
ϕ(b)− ϕ(a)

))
dµ(x)

=
ϕ(b)− ϕ(ξ)
ϕ(b)− ϕ(a)

ψ (f(a)) +
ϕ(ξ)− ϕ(a)
ϕ(b)− ϕ(a)

ψ (f(b)) .

This is a contradiction, completing the reductio ad absurdum. �
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