A CHEMOTAXIS MODEL IN A STRATIFIED DOMAIN

ELENA-ROXANA ARDELEANU (SGARCEA)

Abstract

The purpose of this paper is to study a mathematical model of reaction-diffusion with chemotaxis that may describe a process of bioremediation of a polluted medium. We shall prove the existence of an asymptotic solution developed with respect to certain small parameters of the problem.

AMS 2010 Subject Classification: 35K57, 30E25, 35B20, 35K60.
Key words: reaction-diffusion system, chemotaxis, perturbation method, boundary value problems.

1. INTRODUCTION

We deal with the study of a mathematical model of reaction-diffusion with chemotaxis that may describe a process of bioremediation of a medium polluted with a pollutant of concentration $c(t, x)$ by an action of a bacteria of density $b(t, x)$ which is able to destroy the pollutant.

A mathematical reaction-diffusion model of chemotaxis is expressed by a system of equations which describe the movement of some microorganisms (bacteria in our case) whose density is denoted by b in response to chemical gradients emitted by the chemoattractant c (in our case the pollutant). For surveys on this subject we refer to [6], [7], [8], [14], [16]. Generally, a chemotactic system consists of two equations for b and c with initial conditions

$$
\begin{gather*}
\frac{\partial b}{\partial t}-\nabla \cdot(D(b, c) \nabla b)+\nabla \cdot(K(b, c) b \nabla c)=g(b, c)-h(b, c), \tag{1}\\
b(0, \xi)=b_{0}(\xi) \tag{2}\\
\frac{\partial c}{\partial t}-\nabla \cdot(\delta(b, c) \nabla c)=\varphi(b, c) \tag{3}\\
c(0, \xi)=c_{0}(\xi) \tag{4}
\end{gather*}
$$

and boundary conditions.
In the previous equations $D(b, c)$ and $\delta(b, c)$ represent the diffusion coefficients of the attracted population b and chemoattractant c respectively $g(b, c)$ and $h(b, c)$ are functions describing the rates of growth and death of b and $\varphi(b, c)$ is the function describing the degradation of the chemoattractant. We

MATH. REPORTS 14(64), 3 (2012), 221-242
still denote

$$
\begin{equation*}
f(b, c)=g(b, c)-h(b, c) . \tag{5}
\end{equation*}
$$

If $f(b, c)$ is positive the rate of growth of bacteria $g(b, c)$ is greater than its mortality rate $h(b, c)$ and if $f(b, c)$ is negative the degradation of b is dominant against its growth. The function K characterizes the chemotactic sensitivity. In literature especially the particular models with special forms for D, K, f or φ have been studied (see the surveys [14], [16]).

The model proposed in this paper focuses on the case in which the kinetic term and the chemotactic sensitivity have a weak influence on the flow.

The chemotaxis model will be set in a stratified 3D domain which can be viewed as a sequence of layers along a space coordinate, in each layer certain problem parameters having constant values, different from one layer to the other. The mathematical model is given by a system of n nonlinear parabolic equations which are made dimensionless, form which displays a dimensionless small parameter (or parameters) ε. We adopt a perturbation procedure (see e.g., [4]), namely we do an asymptotic analysis by developing all the functions with respect to the powers of the small parameters and retain two systems for the 0 -order and 1 -order of approximations. The existence and uniqueness of a global in time solution for the asymptotic model are studied within the framework of the evolution equations with m-accretive operators in Hilbert spaces, under certain assumptions for the nonlinear functions f and K.

2. THE MODEL FORMULATION

We consider that the spatial 3D domain is

$$
\Omega=\left\{\xi=(x, y, z) \in \mathbb{R}^{3} ; x \in(0, L), \xi^{\prime}=(y, z) \in \Omega_{2}\right\},
$$

where Ω_{2} is an open bounded subset of \mathbb{R}^{2} with a sufficient regular boundary (e.g., of class C^{2}). We assume that the domain Ω is composed of n parallel layers $\left(x_{i-1}, x_{i}\right)$ along the $O x$ axis. The separation of the layers being due to the fact that certain parameters of the problem have constant values in the layer i, i.e., they do not depend on the variable x in $\left(x_{i-1}, x_{i}\right)$.

We consider that in each layer i the chemotaxis process is modeled by the equations (1) and (3) written for the b_{i} and the chemoattractant c_{i}. In our model, we shall consider a particular form of the function $\varphi(b, c)$ encountered also in other studies (see [10]). However, there will be an essential difference with respect to that model, because it will be considered that the chemoattractant diffusion is positive. Let us consider

$$
\begin{equation*}
\varphi_{i}\left(b_{i}, c_{i}\right)=-\frac{\beta_{1 i} c_{i}}{1+\beta_{2 i} c_{i}} b_{i} . \tag{6}
\end{equation*}
$$

Thus, in each layer $i, i=\overline{1, n}$, we consider constant values for $D_{i}, \delta_{i}, \beta_{1 i}, \beta_{2 i}$ with

$$
\begin{equation*}
D_{i}>0, \delta_{i}>0, \beta_{1 i} \geq 0, \beta_{2 i} \geq 0 \tag{7}
\end{equation*}
$$

These values as well as the expressions of the functions f_{i}, K_{i} which do not depend explicitly on x are different from one layer to another. Therefore, the domain Ω consists of n subdomains Ω_{i}, having the boundaries

$$
\partial \Omega_{i}=\Gamma_{i-1} \cup \Gamma_{i} \cup \Gamma_{i}^{l a t}, \quad i=1, \ldots, n,
$$

where $\Gamma_{i}^{\text {lat }}$ are the lateral boundary of Ω_{i} and $\Gamma_{i}=\left\{x=x_{i}\right\}, i=0, \ldots, n$. The surfaces Γ_{0} and Γ_{n} are the external boundaries, while Γ_{i} with $i=1, \ldots, n-1$ are the boundaries between layers. We denote

$$
Q_{i}:=(0, T) \times \Omega_{i}, \quad \Sigma_{i}:=(0, T) \times \Gamma_{i}, \quad \Sigma_{i}^{l a t}:=(0, T) \times \Gamma_{i}^{l a t}, \quad i=1, \ldots, n .
$$

The interaction between the layers is established by transmission conditions for b_{i} and c_{i}, i.e., the continuity of the solutions and fluxes. We assume that the system is closed for bacteria, namely the flux across the exterior frontiers is zero. For the chemoattractant we can require homogeneous Dirichlet conditions on the external boundaries (the pollutant does not reach the boundaries).

With these considerations, we propose as mathematical model the following system

$$
\begin{gather*}
\frac{\partial b_{i}}{\partial t}-D_{i} \Delta b_{i}+\nabla \cdot\left[b_{i} K_{i}\left(b_{i}, c_{i}\right) \nabla c_{i}\right]=f_{i}\left(b_{i}, c_{i}\right) \text { in } Q_{i}, \tag{8}\\
\frac{\partial c_{i}}{\partial t}=\delta_{i} \Delta c_{i}-\frac{\beta_{1 i} c_{i}}{1+\beta_{2 i} c_{i}} b_{i} \text { in } Q_{i}, \tag{9}\\
b_{i}(0, \xi)=b_{i, 0}(\xi) \text { in } \Omega_{i}, \tag{10}\\
c_{i}(0, \xi)=c_{i, 0}(\xi) \text { in } \Omega_{i}, \tag{11}
\end{gather*}
$$

for all $i=\overline{1, n}$, where $c_{i, 0}$ and $b_{i, 0}$ are initial conditions for c_{i} and b_{i}. At the interface between two layers we have the conditions

$$
\begin{gather*}
-D_{i} \frac{\partial b_{i}}{\partial x}+b_{i} K_{i}\left(b_{i}, c_{i}\right) \frac{\partial c_{i}}{\partial x}= \tag{12}\\
=-D_{i+1} \frac{\partial b_{i+1}}{\partial x}+b_{i+1} K_{i+1}\left(b_{i+1}, c_{i+1}\right) \frac{\partial c_{i+1}}{\partial x} \text { on } \Sigma_{i}, \\
b_{i}=b_{i+1} \text { on } \Sigma_{i}, \tag{13}\\
c_{i}=c_{i+1} \text { on } \Sigma_{i} \tag{14}\\
\delta_{i} \frac{\partial c_{i}}{\partial x}=\delta_{i+1} \frac{\partial c_{i+1}}{\partial x} \text { on } \Sigma_{i}, \tag{15}
\end{gather*}
$$

for $i=\overline{1, n-1}$ together with the boundary conditions on the exterior horizontal and lateral boundaries

$$
\begin{gather*}
-D_{1} \frac{\partial b_{1}}{\partial x}+b_{1} K_{1}\left(b_{1}, c_{1}\right) \frac{\partial c_{1}}{\partial x}=0 \text { on } \Sigma_{0}, \tag{16}\\
-D_{n} \frac{\partial b_{n}}{\partial x}+b_{n} K_{n}\left(b_{n}, c_{n}\right) \frac{\partial c_{n}}{\partial x}=0 \text { on } \Sigma_{n}, \tag{17}\\
\nabla b_{i} \cdot \nu=0 \text { on } \Sigma_{i}^{l a t}, \quad i=\overline{1, n}, \tag{18}\\
c_{1}=0 \text { on } \Sigma_{0}, \tag{19}\\
c_{n}=0 \text { on } \Sigma_{n} \tag{20}\\
c_{i}=0 \text { on } \Sigma_{i}^{\text {lat }, \quad i=\overline{1, n} .} \tag{21}
\end{gather*}
$$

Here ν is the unit outer normal to $\Gamma_{i}^{l a t}$ and $\frac{\partial}{\partial v}$ is the normal derivative.
In order to write the dimensionless system, we consider characteristic values denoted by index " a ": L_{a} for length, T_{a} for time, b_{a}, c_{a} for concentrations c_{i} and b_{i}, respectively, D_{a}, δ_{a} for the diffusion coefficients, K_{a} for the chemotactic reaction, f_{a} for the rate of variation of $b_{i}, \beta_{1 a}$ and $\beta_{2 a}$ for the kinetic coefficients and we introduce the relations

$$
\begin{gathered}
\xi=\xi^{*} L_{a}, \quad t=t^{*} T_{a}, \quad b_{i}=b_{i}^{*} b_{a}, \quad c_{i}=c_{i}^{*} c_{a}, \quad D_{i}=D_{i}^{*} D_{a} \\
\delta_{i}=\delta_{i}^{*} \delta_{a}, \quad K_{i}=K_{i}^{*} K_{a}, \quad f_{i}=f_{i}^{*} f_{a}, \quad \beta_{1 i}=\beta_{1 i}^{*} \beta_{1 a}, \quad \beta_{2 i}=\beta_{2 i}^{*} \beta_{2 a},
\end{gathered}
$$

where the superscript "*" denotes dimensionless quantities. They are replaced in the dimensional system and we get the system equations in dimensionless form

$$
\begin{gather*}
\frac{\partial b_{i}^{*}}{\partial t^{*}}-\bar{D} D_{i}^{*} \Delta b_{i}^{*}+\bar{K} \nabla \cdot\left[b_{i}^{*} K_{i}^{*}\left(b_{i}^{*}, c_{i}^{*}\right) \nabla c_{i}^{*}\right]=\bar{f} f_{i}^{*}\left(b_{i}^{*}, c_{i}^{*}\right) \text { in } Q_{i}^{*}, \tag{22}\\
\frac{\partial c_{i}^{*}}{\partial t^{*}}=\bar{\delta} \delta_{i}^{*} \Delta c_{i}^{*}-\frac{\overline{\beta_{1}} \beta_{1 i}^{*} c_{i}^{*}}{1+\overline{\beta_{2}} \beta_{2 i}^{*} c_{i}^{*}} b_{i}^{*} \text { in } Q_{i}^{*} \tag{23}\\
b_{i}^{*}\left(0, \xi^{*}\right)=b_{i, 0}^{*}\left(\xi^{*}\right), \quad \xi^{*} \in \Omega_{i}^{*}, \tag{24}\\
c_{i}^{*}\left(0, \xi^{*}\right)=c_{i, 0}^{*}\left(\xi^{*}\right), \quad \xi^{*} \in \Omega_{i}^{*} \tag{25}
\end{gather*}
$$

for all $i=\overline{1, n}$, where $\bar{D}, \bar{K}, \bar{f}, \bar{\delta}$ are dimensionless parameters given by

$$
\begin{aligned}
& \bar{D}=\frac{T_{a}}{L_{a}^{2}} D_{a}, \quad \bar{\delta}=\frac{T_{a}}{L_{a}^{2}} \delta_{a}, \quad \bar{K}=\frac{c_{a} T_{a}}{L_{a}^{2}} K_{a}, \\
& \bar{f}=\frac{T_{a}}{b_{a}} f_{a}, \quad \overline{\beta_{1}}=b_{a} T_{a} \beta_{1 a}, \quad \overline{\beta_{2}}=c_{a} \beta_{2 a} .
\end{aligned}
$$

The dimensionless boundary conditions are

$$
\begin{gather*}
-\bar{D} D_{i}^{*} \frac{\partial b_{i}^{*}}{\partial x^{*}}+\bar{K} b_{i}^{*} K_{i}^{*}\left(b_{i}^{*}, c_{i}^{*}\right) \frac{\partial c_{i}^{*}}{\partial x^{*}}= \tag{26}\\
=-\bar{D} D_{i+1}^{*} \frac{\partial b_{i+1}^{*}}{\partial x^{*}}+\bar{K} b_{i+1}^{*} K_{i+1}^{*}\left(b_{i+1}^{*}, c_{i+1}^{*}\right) \frac{\partial c_{i+1}^{*}}{\partial x^{*}} \text { on } \Sigma_{i}^{*}, \\
b_{i}^{*}=b_{i+1}^{*} \text { on } \Sigma_{i}^{*}, \tag{27}\\
c_{i}^{*}=c_{i+1}^{*} \text { on } \Sigma_{i}^{*}, \tag{28}\\
\delta_{i}^{*} \frac{\partial c_{i}^{*}}{\partial x^{*}}=\delta_{i+1}^{*} \frac{\partial c_{i+1}^{*}}{\partial x^{*}} \text { on } \Sigma_{i}^{*}, \tag{29}
\end{gather*}
$$

for $i=\overline{1, n-1}$ and

$$
\begin{gather*}
-\bar{D} D_{1}^{*} \frac{\partial b_{1}^{*}}{\partial x^{*}}+\bar{K} b_{1}^{*} K_{1}^{*}\left(b_{1}^{*}, c_{1}^{*}\right) \frac{\partial c_{1}^{*}}{\partial x^{*}}=0 \text { on } \Sigma_{0}^{*}, \tag{30}\\
-\bar{D} D_{n}^{*} \frac{\partial b_{n}^{*}}{\partial x^{*}}+\bar{K} b_{n}^{*} K_{n}^{*}\left(b_{n}^{*}, c_{n}^{*}\right) \frac{\partial c_{n}^{*}}{\partial x^{*}}=0 \text { on } \Sigma_{n}^{*}, \tag{31}\\
\nabla b_{i}^{*} \cdot \nu=0 \text { on } \Sigma_{i}^{* l a t}, \quad i=\overline{1, n}, \tag{32}\\
c_{1}^{*}=0 \text { on } \Sigma_{0}^{*}, \tag{33}\\
c_{n}^{*}=0 \text { on } \Sigma_{n}^{*}, \tag{34}\\
c_{i}^{*}=0 \text { on } \Sigma_{i}^{* l a t}, \quad i=\overline{1, n} . \tag{35}
\end{gather*}
$$

To simplify the writing, the superscript "*" will be no longer indicated.

2.1. Hypotheses

In the system (22)-(35) we assume that the influence of the kinetic term and chemotactic coefficient are of ε-order with respect to the other dimensionless parameters and we set

$$
\begin{equation*}
\overline{\beta_{2}}=\varepsilon, \quad \bar{K}=\varepsilon . \tag{36}
\end{equation*}
$$

The other parameters $\bar{D}, \bar{f}, \bar{\delta}, \overline{\beta_{1}}$ are assumed of $O(1)$.
We make the following hypotheses, for all $i=\overline{1, n}$:
$\left.\mathrm{i}_{1}\right) b_{i, 0} \geq 0$ and there exists an i such that $b_{i, 0}>0$;
$\left.\mathrm{i}_{2}\right) c_{i, 0} \geq 0$ and there exists an i such that $c_{i, 0}>0$;
is) $D_{i} \geq D_{0}>0$ in Ω_{i} with $D_{0}=\min _{i=\overline{1, n}} D_{i}$;
$\left.\mathrm{i}_{4}\right) \delta_{i} \geq \delta_{0}>0$ in Ω_{i} with $\delta_{0}=\min _{i=\overline{1, n}} \delta_{i}$;
$\left.\mathrm{i}_{5}\right)\left(r_{1}, r_{2}\right) \rightarrow K_{i}\left(r_{1}, r_{2}\right)$ are bounded in absolute value, i.e., $\left|K_{i}\left(r_{1}, r_{2}\right)\right| \leq$ K_{M} for any $r_{1}, r_{2} \in \mathbb{R}$.

We observe that generally, equations with nonlinear terms f_{i} do not admit global solutions in time (see [11], [12]). In this article we consider the
next form for f_{i} for which we shall prove the existence of a global solution in time

$$
\begin{equation*}
f_{i}\left(r_{1}, r_{2}\right)=-k_{i} r_{1}+\varepsilon \widetilde{f}_{i}\left(r_{1}, r_{2}\right), \tag{37}
\end{equation*}
$$

where k_{i} are positive constants for $i=\overline{1, n}$ with $k_{0}=\min _{i=\overline{1, n}} k_{i}$. We consider that $\left.\mathrm{i}_{6}\right)\left(r_{1}, r_{2}\right) \rightarrow\left|\widetilde{f_{i}}\left(r_{1}, r_{2}\right)\right|$ are bounded for any $r_{1}, r_{2} \in \mathbb{R}$.

2.2. ε^{0}-order and ε^{1}-order approximations

We write the series expansions of all functions with respect to the small parameters $\overline{\beta_{2}}=\bar{K}=\varepsilon$. We have

$$
\begin{gathered}
b_{i}(t, \xi)=b_{i}^{0}(t, \xi)+\varepsilon b_{i}^{1}(t, \xi)+\cdots, \\
c_{i}(t, \xi)=c_{i}^{0}(t, \xi)+\varepsilon c_{i}^{1}(t, \xi)+\cdots, \\
K_{i}\left(b_{i}, c_{i}\right)=K_{i}\left(b_{i}^{0}, c_{i}^{0}\right)+\varepsilon\left(K_{i}\right)_{b_{i}}\left(b_{i}^{0}, c_{i}^{0}\right) b_{i}^{1}+\varepsilon\left(K_{i}\right)_{c_{i}}\left(b_{i}^{0}, c_{i}^{0}\right) c_{i}^{1}+\cdots, \\
f_{i}\left(b_{i}, c_{i}\right)=f_{i}\left(b_{i}^{0}, c_{i}^{0}\right)+\varepsilon\left(f_{i}\right)_{b_{i}}\left(b_{i}^{0}, c_{i}^{0}\right) b_{i}^{1}+\varepsilon\left(f_{i}\right)_{c_{i}}\left(b_{i}^{0}, c_{i}^{0}\right) c_{i}^{1}+\cdots,
\end{gathered}
$$

where $\left(K_{i}\right)_{b_{i}},\left(K_{i}\right)_{c_{i}},\left(f_{i}\right)_{b_{i}},\left(f_{i}\right)_{c_{i}}$ represent the derivatives of K_{i} and f_{i} with respect to b_{i} and c_{i}.

We replace these series in the system (22)-(35) and by equaling the coefficients of the powers of ε^{0} and ε^{1} we deduce the systems corresponding to the ε^{0}-order and ε^{1}-order approximations, without writing the symbol "*", as specified before.

So for the ε^{0}-order approximation we get

$$
\begin{gather*}
\frac{\partial b_{i}^{0}}{\partial t}-\bar{D} D_{i} \Delta b_{i}^{0}=-\bar{f} k_{i} b_{i}^{0} \text { in } Q_{i}, \tag{38}\\
\frac{\partial c_{i}^{0}}{\partial t}=\bar{\delta} \delta_{i} \Delta c_{i}^{0}-\overline{\beta_{1}} \beta_{1 i} c_{i}^{0} b_{i}^{0} \text { in } Q_{i}, \tag{39}\\
b_{i}^{0}(0, \xi)=b_{i, 0}(\xi) \text { in } \Omega_{i}, \tag{40}\\
c_{i}^{0}(0, \xi)=c_{i, 0}(\xi) \text { in } \Omega_{i}, \tag{41}
\end{gather*}
$$

for $i=\overline{1, n}$,

$$
\begin{gather*}
D_{i} \frac{\partial b_{i}^{0}}{\partial x}=D_{i+1} \frac{\partial b_{i+1}^{0}}{\partial x} \text { on } \Sigma_{i}, \tag{42}\\
b_{i}^{0}=b_{i+1}^{0} \text { on } \Sigma_{i}, \tag{43}\\
c_{i}^{0}=c_{i+1}^{0} \text { on } \Sigma_{i}, \tag{44}\\
\delta_{i} \frac{\partial c_{i}^{0}}{\partial x}=\delta_{i+1} \frac{\partial c_{i+1}^{0}}{\partial x} \text { on } \Sigma_{i}, \tag{45}
\end{gather*}
$$

for $i=\overline{1, n-1}$,

$$
\begin{align*}
\frac{\partial b_{1}^{0}}{\partial x}(t, \xi) & =0, \quad(t, \xi) \in \Sigma_{0} \tag{46}\\
\frac{\partial b_{n}^{0}}{\partial x}(t, \xi) & =0, \quad(t, \xi) \in \Sigma_{n} \tag{47}
\end{align*}
$$

$$
\begin{equation*}
\nabla b_{i}^{0} \cdot \nu=0, \quad(t, \xi) \in \Sigma_{i}^{l a t}, i=\overline{1, n} \tag{48}
\end{equation*}
$$

Next, identifying the coefficients of ε^{1} we obtain the following system for the ε^{1}-order approximation

$$
\begin{gather*}
\frac{\partial b_{i}^{1}}{\partial t}-\bar{D} D_{i} \Delta b_{i}^{1}+\bar{f} k_{i} b_{i}^{1}=F_{i}(t, \xi) \text { in } Q_{i} \tag{50}\\
\frac{\partial c_{i}^{1}}{\partial t}-\bar{\delta} \delta_{i} \Delta c_{i}^{1}+\overline{\beta_{1}} \beta_{1 i} b_{i}^{0} c_{i}^{1}=H_{i}(t, \xi) \text { in } Q_{i} \tag{51}\\
c_{i}^{1}(0, \xi)=0 \text { in } \Omega_{i} \tag{52}\\
b_{i}^{1}(0, \xi)=0 \text { in } \Omega_{i} \tag{53}
\end{gather*}
$$

for $i=\overline{1, n}$,

$$
\begin{gather*}
\left.\left(-\bar{D} D_{i} \frac{\partial b_{i}^{1}}{\partial x}+\bar{D} D_{i+1} \frac{\partial b_{i+1}^{1}}{\partial x}\right)\right|_{x=x_{i}}=G_{i}\left(t, x_{i}, \xi^{\prime}\right) \text { on } \Sigma_{i} \tag{54}\\
b_{i}^{1}=b_{i+1}^{1} \text { on } \Sigma_{i} \tag{55}\\
c_{i}^{1}=c_{i+1}^{1} \text { on } \Sigma_{i} \tag{56}\\
\delta_{i} \frac{\partial c_{i}^{1}}{\partial x}=\delta_{i+1} \frac{\partial c_{i+1}^{1}}{\partial x} \text { on } \Sigma_{i} \tag{57}
\end{gather*}
$$

for $i=\overline{1, n-1}$,

$$
\begin{align*}
& -\bar{D} D_{1} \frac{\partial b_{1}^{1}}{\partial x}=G_{0}\left(t, x_{0}, \xi^{\prime}\right) \text { on } \Sigma_{0} \tag{58}\\
& \bar{D} D_{n} \frac{\partial b_{n}^{1}}{\partial x}=G_{n}\left(t, x_{n}, \xi^{\prime}\right) \text { on } \Sigma_{n} \tag{59}
\end{align*}
$$

$$
\begin{equation*}
\nabla b_{i}^{1} \cdot \nu=0 \text { on } \Sigma_{i}^{l a t} \tag{60}
\end{equation*}
$$

for $i=\overline{1, n}$, where we have denoted by $\xi^{\prime}:=(y, z) \in \Omega_{2}$,
(62) $\quad F_{i}(t, \xi)=\bar{f} \tilde{f}_{i}\left(b_{i}^{0}, c_{i}^{0}\right)-\nabla \cdot\left[b_{i}^{0}(t, \xi) K_{i}\left(b_{i}^{0}, c_{i}^{0}\right) \nabla c_{i}^{0}(t, \xi)\right]$,

$$
\begin{equation*}
H_{i}(t, \xi)=-\beta_{2 i} c_{i}^{0}(t, \xi) \frac{\partial c_{i}^{0}}{\partial t}+\bar{\delta} \delta_{i} \beta_{2 i} c_{i}^{0}(t, \xi) \Delta c_{i}^{0}-\overline{\beta_{1}} \beta_{1 i} c_{i}^{0}(t, \xi) b_{i}^{1}(t, \xi) \tag{63}
\end{equation*}
$$

for all $i=\overline{1, n}$,

$$
\begin{align*}
& G_{i}\left(t, x_{i}, \xi^{\prime}\right)=\left(-b_{i}^{0}(t, \xi) K_{i}\left(b_{i}^{0}, c_{i}^{0}\right) \frac{\partial c_{i}^{0}}{\partial x}+\right. \tag{64}\\
& \left.+b_{i+1}^{0}(t, \xi) K_{i+1}\left(b_{i+1}^{0}, c_{i+1}^{0}\right) \frac{\partial c_{i+1}^{0}}{\partial x}\right)\left.\right|_{x=x_{i}}
\end{align*}
$$

for all $i=\overline{1, n-1}$, and by

$$
\begin{align*}
G_{0}\left(t, x_{0}, \xi^{\prime}\right) & =\left.\left(-b_{1}^{0}(t, x) K_{1}\left(b_{1}^{0}, c_{1}^{0}\right) \frac{\partial c_{1}^{0}}{\partial x}\right)\right|_{x=x_{0}}, \tag{65}\\
G_{n}\left(t, x_{n}, \xi^{\prime}\right) & =\left.\left(b_{n}^{0}(t, x) K_{n}\left(b_{n}^{0}, c_{n}^{0}\right) \frac{\partial c_{n}^{0}}{\partial x}\right)\right|_{x=x_{n}} \tag{66}
\end{align*}
$$

Once solved the system for the ε^{0}-order approximation the functions $F_{i}(t, \xi)$, $H_{i}(t, \xi), G_{i}\left(t, x_{i}, \xi^{\prime}\right), G_{0}\left(t, x_{0}, \xi^{\prime}\right), G_{n}\left(t, x_{n}, \xi^{\prime}\right)$ become known.

We retain only the first two approximations because the equations for the next approximations raise the same mathematical treatment as those corresponding to the ε^{1}-order system. Further approximations can be used for numerical purposes.

We shall resume in detail the definition of the solutions b_{i}^{0}, c_{i}^{0} and b_{i}^{1}, c_{i}^{1} in the next sections.

3. THE ε^{0}-ORDER APPROXIMATION

We resume the system (38)-(49) for the ε^{0}-order approximation. For the moment we recall only the equations for b_{i}^{0}. In order to simplify the writing we shall no longer write the " 0 " superscript symbol. We get the system

$$
\begin{gather*}
\frac{\partial b_{i}}{\partial t}-\bar{D} D_{i} \Delta b_{i}+\bar{f} k_{i} b_{i}=0 \text { in } Q_{i}, \quad i=\overline{1, n}, \tag{67}\\
b_{i}(0, \xi)=b_{i, 0}(\xi) \text { in } \Omega_{i}, \quad i=\overline{1, n}, \tag{68}\\
D_{i} \frac{\partial b_{i}}{\partial x}=D_{i+1} \frac{\partial b_{i+1}}{\partial x} \text { on } \Sigma_{i}, \quad i=\overline{1, n-1}, \tag{69}\\
b_{i}=b_{i+1} \text { on } \Sigma_{i}, \quad i=\overline{1, n-1}, \tag{70}\\
\frac{\partial b_{1}}{\partial x}=0 \text { on } \Sigma_{0}, \tag{71}\\
\frac{\partial b_{n}}{\partial x}=0 \text { on } \Sigma_{n}, \tag{72}\\
\nabla b_{i} \cdot \nu=0 \text { on } \Sigma_{i}^{l a t}, \quad i=\overline{1, n} . \tag{73}
\end{gather*}
$$

Functional framework. We introduce the functions

$$
\begin{align*}
& b(t, \xi), c(t, \xi)=\left\{\begin{array}{ll}
b_{1}(t, \xi), c_{1}(t, \xi), & x \in\left(x_{0}, x_{1}\right) \\
\cdots \\
b_{n}(t, \xi), c_{n}(t, \xi), & x \in\left(x_{n-1}, x_{n}\right)
\end{array},\right. \tag{74}\\
& b_{0}(\xi), c_{0}(\xi)=\left\{\begin{array}{ll}
b_{1,0}(\xi), c_{1,0}(\xi), & x \in\left(x_{0}, x_{1}\right) \\
\cdots \\
b_{n, 0}(\xi), c_{n, 0}(\xi), & x \in\left(x_{n-1}, x_{n}\right)
\end{array},\right. \\
& D(x), \delta(x)=\left\{\begin{array}{ll}
\bar{D} D_{1}, \bar{\delta} \delta_{1}, & x \in\left(x_{0}, x_{1}\right) \\
\cdots \\
\bar{D} D_{n}, \bar{\delta} \delta_{n}, & x \in\left(x_{n-1}, x_{n}\right)
\end{array},\right. \\
& k(x)= \begin{cases}\bar{f} k_{1}, & x \in\left(x_{0}, x_{1}\right) \\
\cdots & \\
\bar{f} k_{n}, & x \in\left(x_{n-1}, x_{n}\right)\end{cases} \\
& \beta_{1}(x)= \begin{cases}\overline{\beta_{1}} \beta_{11}, & x \in\left(x_{0}, x_{1}\right) \\
\cdots & \\
\overline{\beta_{1}} \beta_{1 n}, & x \in\left(x_{n-1}, x_{n}\right)\end{cases} \tag{75}
\end{align*}
$$

Similarly, we define $f(b, c, x)$ and $K(b, c, x)$.
We notice that assumption (7) and hypotheses $\left.\mathrm{i}_{1}\right)-\mathrm{i}_{4}$) imply similar properties for the functions defined before. Namely, we have

$$
\begin{gather*}
c_{0}(\xi) \geq 0, \tag{76}\\
b_{0}(\xi) \geq 0, \tag{77}\\
D(x) \geq D_{0}>0, \tag{78}\\
\delta(x) \geq \delta_{0}>0, \tag{79}\\
\beta_{1}(x) \geq 0 . \tag{80}
\end{gather*}
$$

Recall that $\Omega=\left(x_{0}, x_{n}\right)$. We consider the Sobolev space $V=H^{1}(\Omega)$ endowed with the standard norm

$$
\|\psi\|_{V}=\left(\|\psi\|^{2}+\|\nabla \psi\|^{2}\right)^{1 / 2}
$$

We denote V^{\prime} the dual of V and $H=L^{2}(\Omega)$ with $V \subset H \subset V^{\prime}$. We also specify that by (\cdot, \cdot) and $\|\cdot\|$ we shall denote the scalar product and the norm in $L^{2}(\Omega)$. The value of $g \in V^{\prime}$ at $\psi \in V$ is

$$
\begin{equation*}
g(\psi)=\langle g, \psi\rangle_{V^{\prime}, V}, \tag{81}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{V^{\prime}, V}$ represents the duality between V^{\prime} and V.

Now, we define the operator $A: V \rightarrow V^{\prime}$ by

$$
\begin{align*}
\langle A b, \psi\rangle_{V^{\prime}, V} & =\sum_{i=1}^{n} \int_{\Omega_{i}}\left[\bar{D} D_{i} \nabla b_{i} \cdot \nabla \psi+\bar{f} k_{i} b_{i} \psi\right] \mathrm{d} \xi \tag{82}\\
& =\int_{\Omega}[D(x) \nabla b \cdot \nabla \psi+k(x) b \psi] \mathrm{d} \xi, \quad \forall \psi \in V
\end{align*}
$$

So, we are led to the Cauchy problem

$$
\begin{gather*}
\frac{\mathrm{d} b}{\mathrm{~d} t}(t)+A b(t)=0 \text { a.e. } t \in(0, T), \tag{83}\\
b(0)=b_{0} . \tag{84}
\end{gather*}
$$

We shall prove that (83)-(84) has a strong solution implying that (67)(73) has a solution in the sense of distributions and that this solution is unique.

3.1. Main results

Theorem 3.1. Let $b_{0} \in L^{2}(\Omega)$. Then problem (83)-(84) has a unique strong solution

$$
\begin{equation*}
b \in W^{1,2}\left([0, T] ; V^{\prime}\right) \cap L^{2}(0, T ; V) \cap C\left([0, T] ; L^{2}(\Omega)\right) \tag{85}
\end{equation*}
$$

which satisfies the estimates

$$
\begin{gather*}
\|b(t)\|^{2}+\alpha_{0} \int_{0}^{t}\|b(\tau)\|_{V}^{2} \mathrm{~d} \tau \leq\left\|b_{0}\right\|^{2} \tag{86}\\
\|b(t)-\bar{b}(t)\| \leq\left\|b_{0}-\overline{b_{0}}\right\| \tag{87}
\end{gather*}
$$

where $\alpha_{0}=2 \min \left\{D_{0}, k_{0}\right\}$ and $\bar{b}(t)$ is another solution of (83) with $\bar{b}(0)=\overline{b_{0}}$.
In addition, if $b_{0} \in V$, we have the regularity

$$
\begin{equation*}
b \in W^{1,2}\left([0, T] ; L^{2}(\Omega)\right) \cap L^{\infty}(0, T ; V) \tag{88}
\end{equation*}
$$

Proof. We prove the existence of the strong solution using the Lions' theorem for the time independent case (see [15]). To this end we show that the operator A is positively defined, bounded and coercive. We have

$$
\begin{aligned}
\|A b(t)\|_{V^{\prime}} & =\sup _{\psi \in V ;\|\psi\|_{V} \leq 1}\left|\langle A b(t), \psi\rangle_{V^{\prime}, V}\right| \\
& \leq \sup _{\psi \in V ;\|\psi\|_{V} \leq 1}\left|\int_{\Omega}(D(x) \nabla b \cdot \nabla \psi+k(x) b \psi) \mathrm{d} \xi\right| \\
& \leq \sup _{\psi \in V ;\|\psi\|_{V} \leq 1}\left(D_{\infty}\|\nabla b\|\|\psi\|_{V}+k_{\infty}\|b\|\|\psi\|_{V}\right) \\
& \leq \max \left\{D_{\infty}, k_{\infty}\right\} \sup _{\psi \in V ;\|\psi\|_{V} \leq 1}\|b\|_{V}\|\psi\|_{V} \leq \max \left\{D_{\infty}, k_{\infty}\right\}\|b\|_{V},
\end{aligned}
$$

where $D_{\infty}=\max _{i=\overline{1, n}} D_{i}$ and $k_{\infty}=\max _{i=\overline{1, n}} k_{i}$.
Then we compute

$$
\begin{aligned}
\langle A b(t), b(t)\rangle_{V^{\prime}, V} & =\int_{\Omega} D(x)(\nabla b)^{2} \mathrm{~d} \xi+\int_{\Omega} k(x) b^{2} \mathrm{~d} \xi \\
& \geq D_{0}\|\nabla b\|^{2}+k_{0}\|b\|^{2} \geq \min \left\{D_{0}, k_{0}\right\}\|b\|_{V}^{2} \geq 0
\end{aligned}
$$

and we conclude that the operator A is coercive.
It follows that the operator A satisfies the hypotheses of Lions' theorem and we conclude that the problem (83)-(84) has a unique strong solution as claimed in (85).

To obtain (86) we multiply (83) by b, integrate over $(0, t)$ and we get

$$
\|b(t)\|^{2}-\left\|b_{0}\right\|^{2}+2 \int_{0}^{t}\langle A b(\tau), b(\tau)\rangle_{V^{\prime}, V} \mathrm{~d} \tau=0 .
$$

Using the fact that the operator A is positively defined we have

$$
\|b(t)\|^{2}-\left\|b_{0}\right\|^{2}+2 D_{0} \int_{0}^{t}\|\nabla b(\tau)\|^{2} \mathrm{~d} \tau+2 k_{0} \int_{0}^{t}\|b(\tau)\|^{2} \mathrm{~d} \tau \leq 0
$$

which implies (86) with $\alpha_{0}=2 \min \left\{D_{0}, k_{0}\right\}$.
In order to obtain (87), let us consider two solutions b and \bar{b} corresponding to the initial data b_{0} and $\overline{b_{0}}$. Writing (86) for $(b(t)-\bar{b}(t))$ we get

$$
\|b(t)-\bar{b}(t)\|^{2}+\alpha_{0} \int_{0}^{t}\|b(\tau)-\bar{b}(\tau)\|_{V}^{2} \mathrm{~d} \tau \leq\left\|b_{0}-\overline{b_{0}}\right\|^{2},
$$

which implies (87) since the second term in the left hand side is positive.
Next, we multiply (83) by $\frac{\mathrm{d} b}{\mathrm{~d} t}$ and integrate over $(0, t)$. We get

$$
\begin{gathered}
\int_{0}^{t} \int_{\Omega}\left(\frac{\mathrm{d} b}{\mathrm{~d} \tau}\right)^{2} \mathrm{~d} \xi \mathrm{~d} \tau+\int_{0}^{t} \int_{\Omega} D(x) \frac{\mathrm{d}}{\mathrm{~d} \tau}\left(|\nabla b|^{2}\right) \mathrm{d} \xi \mathrm{~d} \tau+ \\
+\int_{0}^{t} \int_{\Omega} k(x) b \frac{\mathrm{~d} b}{\mathrm{~d} \tau} \mathrm{~d} \xi \mathrm{~d} \tau=0 .
\end{gathered}
$$

Using (78) we can write

$$
\int_{0}^{t}\left\|\frac{\mathrm{~d} b}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau+D_{0}\|\nabla b(t)\|^{2} \leq D_{\infty}\left\|\nabla b_{0}\right\|^{2}-k_{\infty} \int_{0}^{t}\|b(\tau)\|\left\|\frac{\mathrm{d} b}{\mathrm{~d} \tau}(\tau)\right\| \mathrm{d} \tau
$$

Further,

$$
\begin{gathered}
\int_{0}^{t}\left\|\frac{\mathrm{~d} b}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau+D_{0}\|\nabla b(t)\|^{2} \leq \\
\leq D_{\infty}\left\|\nabla b_{0}\right\|^{2}+\frac{k_{\infty}^{2}}{2} \int_{0}^{t}\|b(\tau)\|^{2} \mathrm{~d} \tau+\frac{1}{2} \int_{0}^{t}\left\|\frac{\mathrm{~d} b}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau .
\end{gathered}
$$

Then we can write

$$
\frac{1}{2} \int_{0}^{t}\left\|\frac{\mathrm{~d} b}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau+D_{0}\|\nabla b(t)\|^{2} \leq D_{\infty}\left\|\nabla b_{0}\right\|^{2}+\frac{k_{\infty}^{2}}{2} \int_{0}^{t}\|b(\tau)\|^{2} \mathrm{~d} \tau
$$

We deduce that

$$
\begin{equation*}
\int_{0}^{t}\left\|\frac{\mathrm{~d} b}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau+2 D_{0}\|\nabla b(t)\|^{2} \leq 2 D_{\infty}\left\|\nabla b_{0}\right\|^{2}+k_{\infty}^{2} T\left\|b_{0}\right\|^{2}=C^{\prime} \tag{89}
\end{equation*}
$$

We use (86) and finally we get

$$
\begin{equation*}
\|b(t)\|_{V} \leq C_{V}, \tag{90}
\end{equation*}
$$

where $C_{V}=\sqrt{\left\|b_{0}\right\|^{2}+\frac{C^{\prime}}{2 D_{0}}}$.
Because $b_{0} \in V$ the relation above implies (88) and it yields that

$$
b_{i} \in W^{1,2}\left([0, T] ; L^{2}\left(\Omega_{i}\right)\right) \cap L^{\infty}\left(0, T ; H^{1}\left(\Omega_{i}\right)\right)
$$

We return in the equation (67) and we deduce that

$$
\bar{D} D_{i} \triangle b_{i}=\frac{\partial b_{i}}{\partial t}+\bar{f} k_{i} b_{i} \in L^{2}\left(0, T ; L^{2}\left(\Omega_{i}\right)\right)
$$

which together with the boundary conditions on the externals boundaries implies that $b_{i} \in L^{2}\left(0, T ; H^{2}\left(\Omega_{i}\right)\right), i=\overline{1, n}$. This assertion is proved in a similar way with the regularity of the weak solutions (see [3]) modifying the proof correspondingly to the Neumann boundary conditions on Γ_{i}.

In conclusion, in each layer the functions b_{i}^{0} have the regularity

$$
\begin{gather*}
b_{i}^{0} \in W^{1,2}\left([0, T] ;\left(H^{1}\left(\Omega_{i}\right)^{\prime}\right) \cap L^{2}\left(0, T ; H^{1}\left(\Omega_{i}\right)\right) \cap\right. \tag{91}\\
\cap C\left([0, T] ; L^{2}\left(\Omega_{i}\right)\right) \cap L^{2}\left(0, T ; H^{2}\left(\Omega_{i}\right)\right) .
\end{gather*}
$$

In order to show the connection with the physical model we verify if the solution falls within an accepted physical domain. This being a concentration we shall check its positiveness.

Proposition 3.2. Assume $b_{0} \in L^{2}(\Omega), b_{0} \geq 0$ a.e. in Ω and let b_{M} be a positive constant such that $0 \leq b_{0} \leq b_{M}$. Then the solution b to problem (83)-(84) satisfies

$$
\begin{equation*}
0 \leq b(t) \leq b_{M} \text { a.e. in } \Omega, \quad \forall t \in[0, T] . \tag{92}
\end{equation*}
$$

Proof. Recalling that the positive and negative parts of b are $b^{+}=$ $\max \{b, 0\}$ and $b^{-}=-\min \{b, 0\}$, we have to prove that $b^{-}(t)=0$ for each $t \in[0, T]$. We multiply (83) scalarly by $b^{-}(t)$ and get

$$
\int_{\Omega} \frac{\mathrm{d} b}{\mathrm{~d} t}(t) b^{-}(t) \mathrm{d} \xi+\int_{\Omega} D(x) \nabla b(t) \cdot \nabla b^{-}(t) \mathrm{d} \xi+\int_{\Omega} k(x) b(t) b^{-}(t) \mathrm{d} \xi=0
$$

We use the Stampacchia's lemma

$$
\begin{equation*}
-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|b^{-}(t)\right\|^{2}-\int_{\Omega} D(x)\left|\nabla b^{-}(t)\right|^{2} \mathrm{~d} \xi-\int_{\Omega} k(x)\left|b^{-}(t)\right|^{2} \mathrm{~d} \xi=0 \tag{93}
\end{equation*}
$$

and integrating over $(0, T)$ we have

$$
\frac{1}{2}\left\|b^{-}(t)\right\|^{2}-\frac{1}{2}\left\|b^{-}(0)\right\|^{2}+D_{0} \int_{0}^{t}\left\|\nabla b^{-}(\tau)\right\|^{2} \mathrm{~d} \tau+k_{0} \int_{0}^{t}\left\|b^{-}(\tau)\right\|^{2} \mathrm{~d} \tau \leq 0
$$

But $b_{0}^{-}=0$ since $b_{0}(t) \geq 0$ and the two last terms are positive since $D_{0}, k_{0} \geq 0$.
It follows that $\left\|b^{-}(t)\right\|=0$ whence $b(t) \geq 0$ for each $t \in[0, T]$.
Now, we consider the equation (83) written equivalently

$$
\int_{0}^{T} \int_{\Omega} \frac{\mathrm{d} b}{\mathrm{~d} t} \psi \mathrm{~d} \xi \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} D(x) \nabla b \cdot \nabla \psi \mathrm{~d} \xi \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} k(x) b \psi \mathrm{~d} \xi \mathrm{~d} t=0
$$

for any $\psi \in L^{2}(0, T ; V)$.
Next, we still have

$$
\begin{gathered}
\int_{0}^{T} \int_{\Omega} \frac{\mathrm{d}}{\mathrm{~d} t}\left(b-b_{M}\right) \psi \mathrm{d} \xi \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} D(x) \nabla\left(b-b_{M}\right) \nabla \psi \mathrm{d} \xi \mathrm{~d} t \\
\quad+\int_{0}^{T} \int_{\Omega}\left[k(x)\left(b-b_{M}\right)+k(x) b_{M}\right] \psi \mathrm{d} \xi \mathrm{~d} t=0
\end{gathered}
$$

and make $\psi=\left(b-b_{M}\right)^{+}$. We obtain

$$
\begin{aligned}
& \frac{1}{2}\left\|\left(b-b_{M}\right)^{+}(t)\right\|^{2}-\frac{1}{2}\left\|\left(b_{0}-b_{M}\right)^{+}\right\|^{2}+\int_{0}^{T} \int_{\Omega} D(x)\left|\nabla\left(b-b_{M}\right)^{+}\right|^{2} \mathrm{~d} \xi \mathrm{~d} t+ \\
& \quad+\int_{0}^{T} \int_{\Omega} k(x)\left|\left(b-b_{M}\right)^{+}\right|^{2} \mathrm{~d} \xi \mathrm{~d} t=-\int_{0}^{T} \int_{\Omega} k(x) b_{M}\left(b-b_{M}\right)^{+} \mathrm{d} \xi \mathrm{~d} t .
\end{aligned}
$$

Since $b_{0} \leq b_{M}$ it follows that $\left(b_{0}-b_{M}\right)^{+}=0$ and we have

$$
\begin{gathered}
\frac{1}{2}\left\|\left(b-b_{M}\right)^{+}(t)\right\|^{2}+D_{0} \int_{0}^{T} \int_{\Omega}\left|\nabla\left(b-b_{M}\right)^{+}\right|^{2} \mathrm{~d} \xi \mathrm{~d} t+ \\
\quad+k_{0} \int_{0}^{T} \int_{\Omega}\left|\left(b-b_{M}\right)^{+}\right|^{2} \mathrm{~d} \xi \mathrm{~d} t \leq 0
\end{gathered}
$$

Finally, we get

$$
\left\|\left(b-b_{M}\right)^{+}(t)\right\|^{2}=0 .
$$

This means that $b(t, \xi) \leq b_{M}$ a.e. in Ω for any $t \in[0, T]$.

Now we resume the system of the ε^{0}-order approximation for c_{i}^{0} written without "0" superscript symbol

$$
\begin{gather*}
\frac{\partial c_{i}}{\partial t}-\bar{\delta} \delta_{i} \Delta c_{i}+\overline{\beta_{1}} \beta_{1 i} b_{i} c_{i}=0 \text { in } Q_{i}, \quad i=\overline{1, n} \tag{94}\\
c_{i}(0, \xi)=c_{i, 0}(\xi) \text { in } \Omega_{i}, \quad i=\overline{1, n} \tag{95}\\
\delta_{i} \frac{\partial c_{i}}{\partial x}=\delta_{i+1} \frac{\partial c_{i+1}}{\partial x} \text { on } \Sigma_{i}, \quad i=\overline{1, n-1} \tag{96}\\
c_{i}=c_{i+1} \text { on } \Sigma_{i}, \quad i=\overline{1, n-1}, \tag{97}\\
c_{i}(t, \xi)=0, \quad(t, \xi) \in \Sigma=\Sigma_{0} \cup \Sigma_{n} \cup \Sigma_{i}^{l a t}, \quad i=\overline{1, n} \tag{98}
\end{gather*}
$$

The problem (94)-(98) is similar to the problem (67)-(73) treated in the space $V_{0}=H_{0}^{1}(\Omega)$ endowed with the standard norm

$$
\|\psi\|_{V_{0}}=\|\nabla \psi\|
$$

with $V_{0}^{\prime}=H^{-1}(\Omega)$ its dual.
Here we define the time dependent operator $B(t): V_{0} \rightarrow V_{0}^{\prime}$ by

$$
\begin{align*}
\langle B(t) c, \psi\rangle_{V_{0}^{\prime}, V_{0}} & =\sum_{i=1}^{n} \int_{\Omega_{i}}\left[\bar{\delta} \delta_{i} \nabla c_{i} \cdot \nabla \psi+\overline{\beta_{1}} \beta_{1 i} b_{i}(t) c_{i} \psi\right] \mathrm{d} \xi \tag{99}\\
& =\int_{\Omega}\left[\delta(x) \nabla c \cdot \nabla \psi+\beta_{1}(x) b(t) c \psi\right] \mathrm{d} \xi, \quad \forall \psi \in V_{0}
\end{align*}
$$

So, we are led to the Cauchy problem

$$
\begin{gather*}
\frac{\mathrm{d} c}{\mathrm{~d} t}(t)+B(t) c(t)=0 \text { a.e. } t \in(0, T), \tag{100}\\
c(0)=c_{0} \tag{101}
\end{gather*}
$$

and we can give the next result.
Theorem 3.3. Let $c_{0} \in L^{2}(\Omega)$. Then problem (100)-(101) has a unique strong solution

$$
\begin{equation*}
c \in W^{1,2}\left([0, T] ; V_{0}^{\prime}\right) \cap L^{2}\left(0, T ; V_{0}\right) \cap C\left([0, T] ; L^{2}(\Omega)\right) \tag{102}
\end{equation*}
$$

which satisfies the estimates

$$
\begin{gather*}
\|c(t)\|^{2}+2 \delta_{0} \int_{0}^{t}\|c(\tau)\|_{V_{0}}^{2} \mathrm{~d} \tau \leq\left\|c_{0}\right\|^{2} \tag{103}\\
\|c(t)-\bar{c}(t)\|^{2}+2 \delta_{0} \int_{0}^{t}\|c(\tau)-\bar{c}(\tau)\|_{V_{0}}^{2} \mathrm{~d} \tau \leq\left\|c_{0}-\bar{c}_{0}\right\|^{2} \tag{104}\\
\|c(t)\|_{V_{0}} \leq C_{V_{0}} \tag{105}
\end{gather*}
$$

where $C_{V_{0}}$ is a constant and $\bar{c}(t)$ is another solution of (100) with $\bar{c}(0)=\overline{c_{0}}$.

In addition, if $c_{0} \in V_{0}$ we have the regularity

$$
\begin{equation*}
c \in W^{1,2}\left([0, T] ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; V_{0}\right) \tag{106}
\end{equation*}
$$

Proof. The proof is similar to the one of Theorem 3.1, just that the space $H^{1}(\Omega)$ is replaced by $H_{0}^{1}(\Omega)$.

In order to obtain (103) we multiply (100) by $c(t)$, we integrate over $(0, t)$ and we get

$$
\begin{gathered}
\frac{1}{2} \int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} \tau}\|c(\tau)\|^{2} \mathrm{~d} \tau+\int_{0}^{t} \int_{\Omega} \delta(x)(\nabla c(\tau))^{2} \mathrm{~d} \xi \mathrm{~d} \tau+ \\
\quad+\int_{0}^{t} \int_{\Omega} \beta_{1}(x) b(\tau) c^{2}(\tau) \mathrm{d} \xi \mathrm{~d} \tau=0
\end{gathered}
$$

For the last term in the right hand side we take into account the relations (80) and (92) and we can write that

$$
\frac{1}{2}\|c(t)\|^{2}+\delta_{0} \int_{0}^{t}\|\nabla c(\tau)\|^{2} \mathrm{~d} \tau \leq \frac{1}{2}\left\|c_{0}\right\|^{2}
$$

which implies (103).
To obtain (104) we consider two solutions c and \bar{c} corresponding to the initial data c_{0} and $\overline{c_{0}}$ and we write (103) for $(c(t)-\bar{c}(t))$.

Next, we multiply (100) by $\frac{\mathrm{d} c}{\mathrm{~d} t}(t)$ and integrate over $(0, t)$. We have

$$
\begin{aligned}
& \int_{0}^{t}\left\|\frac{\mathrm{~d} c}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau+\int_{0}^{t} \int_{\Omega} \delta(x)(\nabla c(\tau))^{2} \mathrm{~d} \xi \mathrm{~d} \tau+ \\
& \quad+\int_{0}^{t} \int_{\Omega} \beta_{1}(x) b(\tau) c(\tau) \frac{\mathrm{d} c}{\mathrm{~d} \tau}(\tau) \mathrm{d} \xi \mathrm{~d} \tau=0
\end{aligned}
$$

Using (79) we can write
$\int_{0}^{t}\left\|\frac{\mathrm{~d} c}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau+\delta_{0}\|\nabla c(t)\|^{2} \leq \delta_{\infty}\left\|\nabla c_{0}\right\|^{2}-\int_{0}^{t} \int_{\Omega} \beta_{1}(x) b(\tau) c(\tau) \frac{\mathrm{d} c}{\mathrm{~d} \tau}(\tau) \mathrm{d} \xi \mathrm{d} \tau$ and further

$$
\begin{aligned}
\int_{0}^{t} & \left\|\frac{\mathrm{~d} c}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau+\delta_{0}\|\nabla c(t)\|^{2} \leq \\
& \leq \delta_{\infty}\left\|\nabla c_{0}\right\|^{2}+\beta_{1 \infty} b_{M} \int_{0}^{t} \int_{\Omega}|c(\tau)|\left|\frac{\mathrm{d} c}{\mathrm{~d} \tau}(\tau)\right| \mathrm{d} \xi \mathrm{~d} \tau \\
& \leq \delta_{\infty}\left\|\nabla c_{0}\right\|^{2}+\beta_{1 \infty} b_{M} \int_{0}^{t}\|c(\tau)\|\left\|\frac{\mathrm{d} c}{\mathrm{~d} \tau}(\tau)\right\| \mathrm{d} \tau \\
& \leq \delta_{\infty}\left\|\nabla c_{0}\right\|^{2}+\frac{\beta_{1 \infty}^{2} b_{M}^{2}}{2} \int_{0}^{t}\|c(\tau)\|^{2} \mathrm{~d} \tau+\frac{1}{2} \int_{0}^{t}\left\|\frac{\mathrm{~d} c}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau
\end{aligned}
$$

So, we get

$$
\int_{0}^{t}\left\|\frac{\mathrm{~d} c}{\mathrm{~d} \tau}(\tau)\right\|^{2} \mathrm{~d} \tau+2 \delta_{0}\|\nabla c(t)\|^{2} \leq 2 \delta_{\infty}\left\|\nabla c_{0}\right\|^{2}+\beta_{1 \infty}^{2} b_{M}^{2} T\left\|c_{0}\right\|^{2}=C_{1}
$$

and from here we deduce that $\|c(t)\|_{V_{0}} \leq C_{V_{0}}$ with $C_{V_{0}}=\sqrt{\frac{C_{1}}{2 \delta_{0}}}$.
It is obvious that in the same way as before we get in each layer

$$
\begin{equation*}
c_{i}^{0} \in W^{1,2}\left([0, T] ; L^{2}\left(\Omega_{i}\right)\right) \cap L^{\infty}\left(0, T ; H_{0}^{1}\left(\Omega_{i}\right)\right) \cap L^{2}\left(0, T ; H^{2}\left(\Omega_{i}\right)\right) \tag{107}
\end{equation*}
$$

Proposition 3.4. Assume $c_{0} \in L^{2}(\Omega), c_{0} \geq 0$ a.e. in Ω and let c_{M} be a positive constant such that $0 \leq c_{0} \leq c_{M}$. Then the solution c to problem (100)-(101) satisfies

$$
\begin{equation*}
0 \leq c(t) \leq c_{M} \text { a.e. in } \Omega, \quad \forall t \in[0, T] . \tag{108}
\end{equation*}
$$

This result ends the proof of the existence and uniqueness of the solution for the system (38)-(49) of ε^{0}-order approximation.

4. THE ε^{1}-ORDER APPROXIMATION

We resume the system (50)-(61) for the ε^{1}-order approximation. We have again two systems, one for b_{i}^{1} and one for c_{i}^{1}. In order to simplify the writing we shall no longer write the " 1 " superscript symbol. First we write the system

$$
\begin{gather*}
\frac{\partial b_{i}}{\partial t}-\bar{D} D_{i} \Delta b_{i}+\bar{f} k_{i} b_{i}=F_{i}(t, \xi) \text { in } Q_{i}, \quad i=\overline{1, n} \tag{109}\\
b_{i}(0, \xi)=0 \text { in } \Omega_{i}, \quad i=\overline{1, n} \tag{110}\\
\left.\left(-\bar{D} D_{i} \frac{\partial b_{i}}{\partial x}+\bar{D} D_{i+1} \frac{\partial b_{i+1}}{\partial x}\right)\right|_{x=x_{i}}=G_{i}\left(t, x_{i}, \xi^{\prime}\right) \text { on } \Sigma_{i} \tag{111}\\
b_{i}=b_{i+1} \text { on } \Sigma_{i}, \quad i=\overline{1, n-1} \tag{112}\\
-\bar{D} D_{1} \frac{\partial b_{1}}{\partial x}=G_{0}\left(t, x_{0}, \xi^{\prime}\right) \text { on } \Sigma_{0} \tag{113}\\
-\bar{D} D_{n} \frac{\partial b_{n}}{\partial x}=G_{n}\left(t, x_{n}, \xi^{\prime}\right) \text { on } \Sigma_{n} \tag{114}\\
\nabla b_{i} \cdot \nu=0 \text { on } \Sigma_{i}^{l a t}, \quad i=\overline{1, n} \tag{115}
\end{gather*}
$$

where F_{i}, G_{i} are given by the relations (62) and (64)-(66).
We recall that $0 \leq b_{i}^{0}(t, \xi) \leq b_{M}$ for any $t \in[0, T]$ by Proposition 3.2 and $K_{i}\left(b_{i}^{0}, c_{i}^{0}\right)$ are bounded in absolute value by hypothesis $\left.\mathrm{i}_{5}\right)$.

We calculate

$$
\begin{aligned}
& \left\|b_{i}^{0}(t) K_{i}\left(b_{i}^{0}(t), c_{i}^{0}(t)\right) \frac{\partial c_{i}^{0}}{\partial x}(t)\right\|_{L^{2}\left(\Omega_{i}\right)}^{2}=\int_{\Omega}\left|b_{i}^{0}(t) K_{i}\left(b_{i}^{0}(t), c_{i}^{0}(t)\right) \frac{\partial c_{i}^{0}}{\partial x}(t)\right|^{2} \mathrm{~d} \xi \leq \\
& (116) \leq K_{M}^{2} b_{M}^{2} \int_{\Omega}\left|\frac{\partial c_{i}^{0}}{\partial x}(t)\right|^{2} \mathrm{~d} \xi \leq K_{M}^{2} b_{M}^{2}\left\|c_{i}^{0}(t)\right\|_{H_{0}^{1}\left(\Omega_{i}\right)}^{2} \leq C \text { a.e. } t \in(0, T)
\end{aligned}
$$

Here we used the relation (105).
Now, we recall the next result (see [9]): if $\eta \in H^{1}(\Omega), \theta \in H^{1}(\Omega)$ then $\eta \theta \in L^{2}(\Omega)$ and

$$
\begin{equation*}
\|\eta \theta\| \leq C\|\eta\|_{H^{1}(\Omega)}\|\theta\|_{H^{1}(\Omega)} \tag{117}
\end{equation*}
$$

and we calculate

$$
\begin{gather*}
\left\|\frac{\partial}{\partial x}\left(b_{i}^{0}(t) K_{i}\left(b_{i}^{0}(t), c_{i}^{0}(t)\right) \frac{\partial c_{i}^{0}}{\partial x}(t)\right)\right\|_{L^{2}\left(\Omega_{i}\right)} \leq \tag{118}\\
\leq K_{M}\left\|\frac{\partial b_{i}^{0}}{\partial x}(t) \frac{\partial c_{i}^{0}}{\partial x}(t)+b_{i}^{0}(t) \frac{\partial^{2} c_{i}^{0}}{\partial x^{2}}(t)\right\|_{L^{2}\left(\Omega_{i}\right)} \leq \\
\leq K_{M}\left\|\frac{\partial b_{i}^{0}}{\partial x}(t) \frac{\partial c_{i}^{0}}{\partial x}(t)\right\|_{L^{2}\left(\Omega_{i}\right)}+K_{M}\left\|b_{i}^{0}(t) \frac{\partial^{2} c_{i}^{0}}{\partial x^{2}}(t)\right\|_{L^{2}\left(\Omega_{i}\right)} .
\end{gather*}
$$

But $b_{i}^{0} \in L^{2}\left(0, T ; H^{2}\left(\Omega_{i}\right)\right)$ and we get that $\frac{\partial b_{i}^{0}}{\partial x}(t) \in H^{1}\left(\Omega_{i}\right)$ for $i=\overline{1, n}$. So, for the first norm we use (117). For the second norm we have $0 \leq b_{i}^{0}(t) \leq$ b_{M} for any $t \in[0, T]$ and we use $\left\|b_{i}^{0}(t) \frac{\partial^{2} c_{i}^{0}}{\partial x^{2}}(t)\right\|_{L^{2}\left(\Omega_{i}\right)} \leq b_{M}\left\|\frac{\partial^{2} c_{i}^{0}}{\partial x^{2}}(t)\right\|_{L^{2}\left(\Omega_{i}\right)}$. We return in (118) and we obtain

$$
\begin{equation*}
\left\|\frac{\partial}{\partial x}\left(b_{i}^{0}(t) K_{i}\left(b_{i}^{0}(t), c_{i}^{0}(t)\right) \frac{\partial c_{i}^{0}}{\partial x}(t)\right)\right\|_{L^{2}\left(\Omega_{i}\right)} \leq C \text { a.e. } t \in(0, T) . \tag{119}
\end{equation*}
$$

We mention that C represents several constants.
We deduce that

$$
\begin{equation*}
b_{i}^{0}(t, \cdot) K_{i}\left(b_{i}^{0}, c_{i}^{0}\right) \frac{\partial c_{i}^{0}}{\partial x}(t, \cdot) \in H^{1}\left(\Omega_{i}\right) \text { a.e. } t \in(0, T) \tag{120}
\end{equation*}
$$

and so its trace on Γ_{i} exists on $L^{2}\left(\Gamma_{i}\right)$ implying that

$$
\begin{equation*}
G_{i} \in L^{2}\left(0, T ; L^{2}\left(\Gamma_{i}\right)\right), \quad i=\overline{1, n} . \tag{121}
\end{equation*}
$$

Next, we know by (62) that

$$
F_{i}(t, \xi)=\bar{f} \widetilde{f}_{i}\left(b_{i}^{0}, c_{i}^{0}\right)-\nabla \cdot\left[b_{i}^{0} K_{i}\left(b_{i}^{0}, c_{i}^{0}\right) \nabla c_{i}^{0}\right] .
$$

By hypothesis i_{6}), $\widetilde{f}_{i}\left(b_{i}^{0}, c_{i}^{0}\right) \in L^{\infty}\left(Q_{i}\right)$ and by (120) it yields that

$$
\nabla \cdot\left[b_{i}^{0} K_{i}\left(b_{i}^{0}, c_{i}^{0}\right) \nabla c_{i}^{0}\right] \in L^{2}\left(Q_{i}\right) .
$$

So, we obtain that $F_{i} \in L^{2}\left(Q_{i}\right)$.
We recall the definition of operator $A: V \rightarrow V^{\prime}$

$$
\langle A b, \psi\rangle_{V^{\prime}, V}=\int_{\Omega}[D(x) \nabla b \cdot \nabla \psi+k(x) b \psi] \mathrm{d} \xi, \quad \forall \psi \in V .
$$

Then for a.e. $t \in(0, T)$ we define $E(t): V \rightarrow V^{\prime}$ by

$$
\begin{equation*}
\langle E(t), \psi\rangle_{V^{\prime}, V}=\sum_{i=1}^{n} \int_{\Omega_{i}} F_{i}(t) \psi \mathrm{d} \xi+\sum_{i=1}^{n} \int_{\Gamma_{i}} G_{i}\left(t, x, \xi^{\prime}\right) \psi \mathrm{d} \sigma \tag{122}
\end{equation*}
$$

for any $\psi \in V$ and so we are led to the Cauchy problem

$$
\begin{gather*}
\frac{\mathrm{d} b}{\mathrm{~d} t}(t)+A b(t)=E(t) \text { a.e. } t \in(0, T), \tag{123}\\
b(0)=0 . \tag{124}
\end{gather*}
$$

Equivalently, it can be written

$$
\begin{gathered}
\int_{0}^{T}\left\langle\frac{\mathrm{~d} b}{\mathrm{~d} t}(t), \psi(t)\right\rangle_{V^{\prime}, V} \mathrm{~d} t+\int_{Q} D(x) \nabla b \cdot \nabla \psi \mathrm{~d} \xi \mathrm{~d} t+\int_{Q} k(x) b \psi \mathrm{~d} \xi \mathrm{~d} t \\
=\sum_{i=1}^{n} \int_{Q_{i}} F_{i} \psi \mathrm{~d} \xi \mathrm{~d} t+\sum_{i=1}^{n} \int_{\Sigma_{i}} G_{i}\left(t, x_{i}, \xi^{\prime}\right) \psi \mathrm{d} \sigma \mathrm{~d} t
\end{gathered}
$$

for any $\psi \in V$.
Theorem 4.1. The problem (123)-(124) has a unique strong solution

$$
\begin{equation*}
b \in W^{1,2}\left([0, T] ; V^{\prime}\right) \cap L^{2}(0, T ; V) \cap C\left([0, T] ; L^{2}(\Omega)\right) \tag{125}
\end{equation*}
$$

which satisfies the estimate

$$
\begin{equation*}
\|b(t)\|^{2}+\alpha_{0} \int_{0}^{t}\|b(\tau)\|_{V}^{2} \mathrm{~d} \tau \leq \frac{1}{\alpha_{0}} \int_{0}^{t}\|E(\tau)\|_{V^{\prime}}^{2} \mathrm{~d} \tau \tag{126}
\end{equation*}
$$

where $\alpha_{0}=\min \left\{D_{0}, k_{0}\right\}$.
Proof. We know that the operator A satisfies the hypotheses of Lions' theorem and that $E(t) \in L^{2}\left(0, T ; V^{\prime}\right)$. We conclude that the system (123)(124) has a unique strong solution as claimed in (125).

To obtain (126) we multiply (123) by b, integrate over $(0, t)$ and we have

$$
\begin{aligned}
& \frac{1}{2}\|b(t)\|^{2}-\frac{1}{2}\left\|b_{0}\right\|^{2}+\int_{0}^{t} D(x)\|\nabla b(\tau)\|^{2} \mathrm{~d} \tau+ \\
+ & \int_{0}^{t} k(x)\|b(\tau)\|^{2} \mathrm{~d} \tau \leq \int_{0}^{t}\|E(\tau)\|_{V^{\prime}}\|b(\tau)\|_{V} \mathrm{~d} \tau .
\end{aligned}
$$

Using the hypotheses for $D(x)$ and $k(x)$ we can write

$$
\begin{gathered}
\frac{1}{2}\|b(t)\|^{2}+D_{0} \int_{0}^{t}\|\nabla b(\tau)\|^{2} \mathrm{~d} \tau+k_{0} \int_{0}^{t}\|b(\tau)\|^{2} \mathrm{~d} \tau \leq \\
\leq \frac{1}{2 \alpha_{0}} \int_{0}^{t}\|E(\tau)\|_{V^{\prime}}^{2} \mathrm{~d} \tau+\frac{\alpha_{0}}{2} \int_{0}^{t}\|b(\tau)\|_{V}^{2} \mathrm{~d} \tau
\end{gathered}
$$

and so we get

$$
\frac{1}{2}\|b(t)\|^{2}+\alpha_{0} \int_{0}^{t}\|b(\tau)\|_{V}^{2} \mathrm{~d} \tau \leq \frac{1}{2 \alpha_{0}} \int_{0}^{t}\|E(\tau)\|_{V^{\prime}}^{2} \mathrm{~d} \tau+\frac{\alpha_{0}}{2} \int_{0}^{t}\|b(\tau)\|_{V}^{2} \mathrm{~d} \tau
$$

where $\alpha_{0}=\min \left\{D_{0}, k_{0}\right\}$. From here we get (126) as we claimed.
Now, we resume the system (50)-(61) for the ε^{1}-order approximation for c_{i}^{1} written without the " 1 " superscript symbol

$$
\begin{gather*}
\frac{\partial c_{i}}{\partial t}-\bar{\delta} \delta_{i} \Delta c_{i}+\overline{\beta_{1}} \beta_{1 i} b_{i}^{0}(t) c_{i}=H_{i}(t, \xi) \text { in } Q_{i}, \quad i=\overline{1, n} \tag{127}\\
c_{i}(0, \xi)=0 \text { in } \Omega_{i}, \quad i=\overline{1, n} \tag{128}\\
\delta_{i} \frac{\partial c_{i}}{\partial x}=\delta_{i+1} \frac{\partial c_{i+1}}{\partial x} \text { on } \Sigma_{i}, \quad i=\overline{1, n-1} \tag{129}\\
c_{i}=c_{i+1} \text { on } \Sigma_{i}, \quad i=\overline{1, n-1}, \tag{130}\\
c_{i}(t, \xi)=0, \quad(t, \xi) \in \Sigma=\Sigma_{0} \cup \Sigma_{n} \cup \Sigma_{i}^{l a t}, \quad i=\overline{1, n} . \tag{131}
\end{gather*}
$$

We recall that $H_{i}(t, \xi)$ is given by relation (63). We know by Proposition 3.4 that c_{i}^{0} is bounded and by (107) we deduce that $\frac{\partial c_{i}^{0}}{\partial t}(t) \in L^{2}\left(\Omega_{i}\right)$ a.e. $t \in(0, T)$. Since $\triangle c_{i}^{0}(t) \in L^{2}\left(\Omega_{i}\right)$ a.e. $t \in(0, T)$ and $b_{i}^{1}(t) \in L^{2}\left(\Omega_{i}\right)$, with these arguments we obtain that $H_{i} \in L^{2}\left(0, T ; L^{2}\left(\Omega_{i}\right)\right)$.

We define the operator $B_{1}(t): V_{0} \rightarrow V_{0}^{\prime}$ by

$$
\left\langle B_{1}(t) c, \psi\right\rangle_{V_{0}^{\prime}, V_{0}}=\int_{\Omega}\left[\delta(x) \nabla c \cdot \nabla \psi+\beta_{1}(x) b^{0}(t) c \psi\right] \mathrm{d} \xi
$$

for any $\psi \in V_{0}$ and $H(t): V_{0} \rightarrow V_{0}^{\prime}$ by

$$
\langle H(t), \psi\rangle_{V_{0}^{\prime}, V_{0}}=\sum_{i=1}^{n} \int_{\Omega_{i}} H_{i}(t) \psi \mathrm{d} \xi \text { a.e. } t \in(0, T) .
$$

So, we have the Cauchy problem

$$
\begin{gather*}
\frac{\mathrm{d} c}{\mathrm{~d} t}(t)+B_{1}(t) c(t)=H(t) \text { a.e. } t \in(0, T), \tag{132}\\
c(0)=0 \tag{133}
\end{gather*}
$$

Theorem 4.2. The problem (132)-(133) has a unique strong solution

$$
\begin{equation*}
c \in W^{1,2}\left([0, T] ; V_{0}^{\prime}\right) \cap L^{2}\left(0, T ; V_{0}\right) \cap C\left([0, T] ; L^{2}(\Omega)\right) \tag{134}
\end{equation*}
$$

which satisfies the estimate

$$
\begin{equation*}
\|c(t)\|^{2}+\delta_{0} \int_{0}^{t}\|c(\tau)\|_{V_{0}}^{2} \mathrm{~d} \tau \leq \frac{1}{\delta_{0}} \int_{0}^{t}\|H(\tau)\|_{V_{0}^{\prime}}^{2} \mathrm{~d} \tau . \tag{135}
\end{equation*}
$$

Proof. The proof is the same like in Theorem 4.1. To obtain (135) we multiply (132) by $c(t)$ and integrate over ($0, t$)

$$
\frac{1}{2} \int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} \tau}\|c(\tau)\|^{2} \mathrm{~d} \tau+\int_{0}^{t}\langle B(\tau) c(\tau), c(\tau)\rangle_{V_{0}^{\prime}, V_{0}} \mathrm{~d} \tau=\int_{0}^{t}\langle H(\tau), c(\tau)\rangle_{V_{0}^{\prime}, V_{0}} \mathrm{~d} \tau
$$

Further, we can write

$$
\begin{gathered}
\frac{1}{2}\|c(t)\|^{2}+\int_{0}^{t} \int_{\Omega} \delta(x)(\nabla c(\tau))^{2} \mathrm{~d} \xi \mathrm{~d} \tau+\int_{0}^{t} \int_{\Omega} \beta_{1}(x) b^{0}(\tau) c^{2}(\tau) \mathrm{d} \xi \mathrm{~d} \tau \\
=\int_{0}^{t}\langle H(\tau), c(\tau)\rangle_{V_{0}^{\prime}, V_{0}} \mathrm{~d} \tau
\end{gathered}
$$

and using the hypotheses and the result from Proposition 3.2 we get

$$
\frac{1}{2}\|c(t)\|^{2}+\delta_{0} \int_{0}^{t}\|\nabla c(\tau)\|^{2} \mathrm{~d} \tau \leq \int_{0}^{t}\|H(\tau)\|_{V_{0}^{\prime}}\|c(\tau)\|_{V_{0}} \mathrm{~d} \tau
$$

Next, we have that

$$
\frac{1}{2}\|c(t)\|^{2}+\delta_{0} \int_{0}^{t}\|c(\tau)\|_{V_{0}}^{2} \mathrm{~d} \tau \leq \frac{1}{2 \delta_{0}} \int_{0}^{t}\|H(\tau)\|_{V_{0}^{\prime}}^{2} \mathrm{~d} \tau+\frac{\delta_{0}}{2} \int_{0}^{t}\|c(\tau)\|_{V_{0}}^{2} \mathrm{~d} \tau
$$

and from here we obtain (135).
It is obvious that by Theorem 4.1 and Theorem 4.2 we can write

$$
\begin{aligned}
b_{i}^{1} \in W^{1,2}\left([0, T] ;\left(H^{1}\left(\Omega_{i}\right)\right)^{\prime}\right) & \cap L^{2}\left(0, T ; H^{1}\left(\Omega_{i}\right)\right) \cap C\left([0, T] ; L^{2}\left(\Omega_{i}\right)\right), \\
c_{i}^{1} \in W^{1,2}\left([0, T] ; H^{-1}\left(\Omega_{i}\right)\right) & \cap L^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{i}\right)\right) \cap C\left([0, T] ; L^{2}\left(\Omega_{i}\right)\right)
\end{aligned}
$$

for each layer $i, i=\overline{1, n}$.
Finally, with the results for the approximations ε^{0} and ε^{1} it can be characterized the solution for the chemotaxis model.

Corollary 4.3. Problem (22)-(35) admits a unique solution up the order of approximation ε,

$$
\begin{gather*}
b \in W^{1,2}\left([0, T] ; V^{\prime}\right) \cap L^{2}(0, T ; V) \cap C\left([0, T] ; L^{2}(\Omega)\right), \tag{136}\\
c \in W^{1,2}\left([0, T] ; V_{0}^{\prime}\right) \cap L^{2}\left(0, T ; V_{0}\right) \cap C\left([0, T] ; L^{2}(\Omega)\right),
\end{gather*}
$$

given by

$$
\begin{gather*}
b(t, \xi)=b^{0}(t, \xi)+\varepsilon b^{1}(t, \xi)+0\left(\varepsilon^{2}\right), \tag{137}\\
c(t, \xi)=c^{0}(t, \xi)+\varepsilon c^{1}(t, \xi)+0\left(\varepsilon^{2}\right) \rightarrow 0 .
\end{gather*}
$$

Remark. This implies that problem (22)-(35) has a unique solution up to the order ε in each layer $i, i=\overline{1, n}$ given by

$$
\begin{array}{r}
b_{i}^{1} \in W^{1,2}\left([0, T] ;\left(H^{1}\left(\Omega_{i}\right)\right)^{\prime}\right) \cap L^{2}\left(0, T ; H^{1}\left(\Omega_{i}\right)\right) \cap C\left([0, T] ; L^{2}\left(\Omega_{i}\right)\right), \\
c_{i}^{1} \in W^{1,2}\left([0, T] ; H^{-1}\left(\Omega_{i}\right)\right) \cap L^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{i}\right)\right) \cap C\left([0, T] ; L^{2}\left(\Omega_{i}\right)\right),
\end{array}
$$

with

$$
\begin{gathered}
b_{i}(t, \xi)=b_{i}^{0}(t, \xi)+\varepsilon b_{i}^{1}(t, \xi)+0\left(\varepsilon^{2}\right), \\
c_{i}(t, \xi)=c_{i}^{0}(t, \xi)+\varepsilon c_{i}^{1}(t, \xi)+0\left(\varepsilon^{2}\right) \rightarrow 0 .
\end{gathered}
$$

The further order of approximations corresponding to $\varepsilon^{n}, n=2,3, \ldots$ involve equations which are similar with those for the ε^{1}-order of approximation, so that we no longer study them. However, for the next order of approximations it might be necessary to complete the set of hypotheses with additional assumptions regarding the properties of the functions K_{i} and \widetilde{f}_{i}.

REFERENCES

[1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden, 1976.
[2] V. Barbu and M. Iannelli, The semigroup approach to non-linear age-structured equations. Rend. Istit. Mat. Univ. Trieste XXVIII (Suppl.) (1997), 59-71.
[3] V. Barbu, Partial Differential Equations and Boundary Value Problems. Kluwer Academic Publishers, Dordrecht, 1998.
[4] J. Cole, Perturbation Methods in Applied Mathematics. Blaisdell, Walthem, MA, 1968.
[5] C. Cusulin, M. Iannelli and G. Marinoschi, Age-structured diffusion in a multi-layer environment. Nonlinear Anal. Real World Appl. 6 (2005), 207-233.
[6] E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. et Biol. 26 (1970), 399-415.
[7] E.F. Keller and L.A. Segel, Model for chemotaxis. J. Theor. et Biol. 30 (2) (1971), 225-234.
[8] E.F. Keller and L.A. Segel, Travelling bands of chemotactic bacteria: A theoretical analysis. J. Theor. et Biol. 30 (2) (1971), 235-248.
[9] M. Fabrizio, A. Favini and G. Marinoschi, An optimal control problem for a singular system of solid-liquid phase transition. Numer. Funct. Anal. Optim. 31 (2010), 9891022.
[10] A. Fasano and D. Giorni, On a one-dimensional problem related to bioremediation of polluted soils. Adv. Math. Sci. Appl. 14 (2004), 443-455.
[11] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\triangle u+u^{1+\alpha}$. J. Math. Sci. Univ. Tokyo, Sect. I, Part 2, 13 (1966), 109-124.
[12] H. Fujita, On some non existence and non uniqueness theorems for nonlinear parabolic equations. Proc. Amer. Math. Symposium on Nonlinear Functional Analysis, Chicago, 1968.
[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics 24, Pitman, London, 1985.
[14] T. Hillen and K.J. Painter, A user's guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183-217.
[15] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969.
[16] M. Tindall, S. Porter, P. Maini and J. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II. Bacterial populations. Bull. Math. Biol. (2008), 1570-1607.

"Vasile Alecsandri" University of Bacău Faculty of Sciences
Mathematics and Informatics Department Calea Mărăsessti 157
600115 Bacău, Romania
sgarcearo@yahoo.com

