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1. PROBLEM STATEMENT

Let {X(t), t ∈ N} be a homogeneous stationary Markov chain of order
r (r ∈ N∗) with the finite state space I = {1, . . . , n} (n ∈ N∗). We denote by
P(r) =

(
P

(r)
i1,...,ir,j

)
(i1,...,ir,j)∈Ir+1 the r-step transition probabilities, i.e.,

P
(r)
i1,...,ir,j = P (X(t + r) = j|X(t) = i1, . . . , X(t + r − 1) = ir), ∀t ∈ N,

for any i1, . . . , ir, j ∈ I. Also, we denote by π(r) =
(
π

(r)
i1,...,ir

)
(i1,...,ir)∈Ir the

joint probability of the states at r consecutive times, i.e.,

π
(r)
i1,...,ir

= P (X(t) = i1, . . . , X(t + r − 1) = ir), ∀t ∈ N,

for any i1, . . . , ir ∈ I. Clearly, the following relations hold

π
(r)
i1,...,ir

≥ 0, ∀i1, . . . , ir ∈ I,(1) ∑
i1,...,ir∈I

π
(r)
i1,...,ir

= 1,(2)

∑
i1,...,ik∈I

π
(r)
i1,...,ik,ik+1,...,ir

=
∑

i1,...,ik∈I

π
(r)
ik+1,...,ir,i1,...,ik

, ∀k ∈ {1, . . . , r − 1},(3)
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P
(r)
i1,...,ir,j ≥ 0, ∀i1, . . . , ir, j ∈ I,∑

j∈I

P
(r)
i1,...,ir,j = 1, ∀i1, . . . , ir ∈ I,(4)

∑
i1,...,ir∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j =

∑
i1,...,ir−1∈I

π
(r)
i1,...,ir−1,j , ∀j ∈ I.(5)

For r ≥ 2, at any time t ∈ N, the state probability distribution π(1) =
(
π

(1)
j

)
j∈I

is given by

π
(1)
j = P (X(t) = j) =

∑
i1,...,ir−1∈I

π
(r)
i1,...,ir−1,j , ∀j ∈ I,

and the (1-step) transition probabilities
(
P

(1)
ij

)
i,j∈I

are given by

P
(1)
ij = P (X(t + 1) = j|X(t) = i) =

∑
i1,...,ir−2∈I

π
(r)
i1,...,ir−2,i,j∑

i1,...,ir−1∈I

π
(r)
i1,...,ir−1,i

, ∀i, j ∈ I.

Hence the chain {X(t), t ∈ N} is completely characterized by the distribution
π(r) and the transition probabilities P(r).

Definition 1.1 (see [9]). Let {X(t), t ∈ N} be a homogeneous stationary
Markov chain of order r as above. The Iosifescu-Theodorescu entropy (IT-
entropy) of this chain is defined as

H(r)
(
P(r)

)
= −

∑
i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j lnP

(r)
i1,...,ir,j .

For notational convenience, 0 ln 0 = 0.

Remark 1.1. The IT-entropy measures the amount of remained uncer-
tainty of the chain at any arbitrary time after the knowledge of its behavior
at r latest times or, equivalently, at all previous times.

The reconstruction of such multiple Markov chain, when only a partial
information is given, arises in many practical applications from various fields
as economics, psychology, biology (see, e.g., Iosifescu [7], Iosifescu and Gri-
gorescu [8]). The r-step transition probabilities are to be found only from
the knowledge of the stationary distribution π(r) and, possibly, of some ad-
ditional constraints, usually expressed by mean values. The maximum entropy
principle, introduced by Jaynes [10, 11], states that one should choose the r-
step transition probabilities that are consistent with the given constraints but
maximize the IT-entropy of the chain.
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In this paper we study the useful case of linear equality constraints. Thus,
we consider the following optimization problem

(P ) :

∣∣∣∣∣∣∣∣
max H(r)(P(r)) = −

∑
i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j lnP

(r)
i1,...,ir,j s.t.

AP(r) = b,

P(r) ≥ 0,

where P(r) =
(
P

(r)
i1,...,ir,j

)
(i1,...,ir,j)∈Ir+1 ∈ Rnr+1

(so it is an nr+1-dimensional

column vector), π(r) =
(
π

(r)
i1,...,ir

)
(i1,...,ir)∈Ir ∈ Rnr

is a given stationary distri-
bution which verifies (1), (2) and (3), A = (ak;i1,...,ir,j)k∈{1,...,m}, (i1,...,ir,j)∈Ir+1∈
Rm×nr+1

is a known matrix and b = (b1, . . . , bm)> ∈ Rm is a known vector
(m ∈ N∗).

We assume that

(6) π(r) > 0.

Also, we assume that the equalities (4) and (5) hold for any feasible solution
P(r) of problem (P ).

Remark 1.2. This assumption is not restrictive since every of equations
(4) and (5) is a linear constraint of type AP(r) = b.

Remark 1.3. The problem (P ) is an linearly constrained programming
problem with a concave objective function.

Next, we use the geometric entropic programming method, introduced
by Erlander [1], to solve problem (P ). We would like to point out that the
maximum entropy principle and the geometric entropic programming method
were used by Gerchak [3], Gzyl and Velásquez [5], Preda and Bălcău [15] for
maxentropic reconstruction of simple Markov chains.

2. THE GEOMETRIC DUAL PROBLEM

To construct a geometric dual problem for problem (P ), we use the fol-
lowing result concerning the IT-entropy.

Lemma 2.1. Let P(r) be a feasible solution of problem (P ). Then, for any
vector y = (yi1,...,ir,j)(i1,...,ir,j)∈Ir+1 ∈ Rnr+1

the next inequality holds

H(r)(P(r)) ≤ ln
∑

i1,...,ir∈I

∑
j∈I

eyi1,...,ir,j −H(π(r))−(7)

−
∑

i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,jyi1,...,ir,j ,
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where
H
(
π(r)

)
= −

∑
i1,...,ir∈I

π
(r)
i1,...,ir

lnπ
(r)
i1,...,ir

is the Shannon entropy of distribution π(r). Moreover, the inequality becomes
an equality if and only if

(8) P
(r)
i1,...,ir,j =

eyi1,...,ir,j

π
(r)
i1,...,ir

∑
s1,...,sr∈I

∑
t∈I

eys1,...,sr,t

, ∀i1, . . . , ir, j ∈ I.

Proof. Case 1. Assume that P
(r)
i1,...,ir,j > 0, ∀i1, . . . , ir, j ∈ I. It follows

from (4) and (2) that

(9)
∑

i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j =

∑
i1,...,ir∈I

π
(r)
i1,...,ir

= 1.

Applying the Jensen’s inequality for the strictly concave function ln x we ob-
tain that

ln
∑

i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j

eyi1,...,ir,j

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j

≥

≥
∑

i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j ln

eyi1,...,ir,j

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j

,

and the equality holds if and only if
eyi1,...,ir,j

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j

= C, ∀i1, . . . , ir, j ∈ I,

where C is a real constant, C > 0. Using (4) we derive that

ln
∑

i1,...,ir∈I

∑
j∈I

eyi1,...,ir,j ≥
∑

i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,jyi1,...,ir,j −

−
∑

i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j lnP

(r)
i1,...,ir,j −

∑
i1,...,ir∈I

π
(r)
i1,...,ir

lnπ
(r)
i1,...,ir

,

and hence we obtain the inequality (7). The equality holds if and only if there
exists a non-negative constant C such that

P
(r)
i1,...,ir,j =

eyi1,...,ir,j

Cπ
(r)
i1,...,ir

, ∀i1, . . . , ir, j ∈ I.

Using (9) we deduce that

C =
∑

i1,...,ir∈I

∑
j∈I

eyi1,...,ir,j ,

and hence we obtain the equality (8).
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Case 2. Let now P
(r)
i1,...,ir,j ≥ 0, ∀i1, . . . , ir, j ∈ I. We set

J = {(i1, . . . , ir, j) ∈ Ir+1 | P (r)
i1,...,ir,j > 0}.

It follows from (9) that ∑
(i1,...,ir,j)∈J

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j = 1.

According to Case 1 we have

ln
∑

(i1,...,ir,j)∈J

eyi1,...,ir,j ≥
∑

(i1,...,ir,j)∈J

π
(r)
i1,...,ir

P
(r)
i1,...,ir,jyi1,...,ir,j −

−
∑

(i1,...,ir,j)∈J

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j ln

(
π

(r)
i1,...,ir

P
(r)
i1,...,ir,j

)
.

But, using the definition of the set J and the monotonicity of the logarithm
function, we have

ln
∑

(i1,...,ir,j)∈J

eyi1,...,ir,j ≤ ln
∑

i1,...,ir∈I

∑
j∈I

eyi1,...,ir,j ,

∑
(i1,...,ir,j)∈J

π
(r)
i1,...,ir

P
(r)
i1,...,ir,jyi1,...,ir,j =

∑
i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,jyi1,...,ir,j ,

∑
(i1,...,ir,j)∈J

π
(r)
i1,...,ir

P
(r)
i1,...,ir,j ln

(
π

(r)
i1,...,ir

P
(r)
i1,...,ir,j

)
= −H(r)(P(r))−H(π(r)),

and hence we obtain the inequality (7). The equality holds if and only J = Ir+1

and

P
(r)
i1,...,ir,j =

eyi1,...,ir,j

π
(r)
i1,...,ir

∑
(s1,...,sr,t)∈J

eys1,...,sr,t

, ∀(i1, . . . , ir, j) ∈ J,

which is equivalent to (8). �

Based on Lemma 2.1, we can define the geometric dual problem of prob-
lem (P ), namely,

(D) :

∣∣∣∣∣∣∣∣∣ min d(z) = ln
∑

i1,...,ir∈I

∑
j∈I

e

−
Ai1,...,ir,j

>z

π
(r)
i1,...,ir + b>z−H(π(r)) s.t.

z ∈ Rm,

where z = (z1, . . . , zm)> ∈ Rm and, for any i1, . . . , ir, j ∈ I, Ai1,...,ir,j =
(ak;i1,...,ir,j)k∈{1,...,m} denotes the (i1, . . . , ir, j)-th column of matrix A.
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Remark 2.1. The dual problem (D) is an unconstrained convex program-
ming problem having a continuously differentiable objective function. Thus,
compared to the primal problem (P ), the dual problem (D) is more attractive
from the computational point of view.

We can now prove the weak duality between problems (P ) and (D).

Theorem 2.1 (Weak duality). If P(r) and z are feasible solutions of
problems (P ) and (D), respectively, then

H(r)(P(r)) ≤ d(z).

Proof. From AP(r) = b it follows that
(
AP(r)

)>
z = b>z. Therefore,

according to (7) we have

H(r)(P(r)) ≤ ln
∑

i1,...,ir∈I

∑
j∈I

eyi1,...,ir,j −
∑

i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
(r)
i1,...,ir,jyi1,...,ir,j −

−H(π(r)) + b>z−
m∑

k=1

∑
i1,...,ir∈I

∑
j∈I

ak;i1,...,ir,jP
(r)
i1,...,ir,jzk,

for any y = (yi1,...,ir,j)(i1,...,ir,j)∈Ir+1 ∈ Rnr+1
. By rearranging the terms we

obtain

H(r)(P(r)) ≤ ln
∑

i1,...,ir∈I

∑
j∈I

eyi1,...,ir,j + b>z−H(π(r))−

−
∑

i1,...,ir∈I

∑
j∈I

(
Ai1,...,ir,j

>z + π
(r)
i1,...,ir

yi1,...,ir,j

)
P

(r)
i1,...,ir,j .

Taking

yi1,...,ir,j = −Ai1,...,ir,j
>z

π
(r)
i1,...,ir

, ∀i1, . . . , ir, j ∈ I

it follows that H(r)(P(r)) ≤ d(z). �

3. STRONG DUALITY

In this section we establish the strong duality between problems (P ) and
(D). The next theorem is the main result of this paper.
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Theorem 3.1 (Strong duality). If z∗ is an optimal solution of the dual
problem (D), then P∗(r) given by

P
∗(r)
i1,...,ir,j =

e
−

Ai1,...,ir,j
>z∗

π
(r)
i1,...,ir

π
(r)
i1,...,ir

∑
s1,...,sr∈I

∑
t∈I

e
−

As1,...,sr,t
>z∗

π
(r)
s1,...,sr

, ∀i1, . . . , ir, j ∈ I

is an optimal solution of the primal problem (P ) and the duality gap vanishes,
i.e., H(r)(P∗(r)) = d(z∗).

Proof. Since the point z∗ minimizes d(z) over Rm it follows that the first
partial derivatives of d(z) must be zero at this point, i.e.,

0 =
∂d

∂zk
(z∗) = −

∑
i1,...,ir∈I

∑
j∈I

ak;i1,...,ir,j

π
(r)
i1,...,ir

e
−

Ai1,...,ir,j
>z∗

π
(r)
i1,...,ir

∑
i1,...,ir∈I

∑
j∈I

e
−

Ai1,...,ir,j
>z∗

π
(r)
i1,...,ir

+ bk =

= −
∑

i1,...,ir∈I

∑
j∈I

ak;i1,...,ir,jP
∗(r)
i1,...,ir,j + bk, ∀k ∈ {1, . . . ,m},

which means that AP∗(r) = b. Obviously, P∗(r) ≥ 0, and hence P∗(r) is a
feasible solution for problem (P ). Applying the equality part of Lemma 2.1 for

P(r) = P∗(r) and yi1,...,ir,j = −Ai1,...,ir,j
>z∗

π
(r)
i1,...,ir

, ∀i1, . . . , ir, j ∈ I,

we obtain that

H(r)(P∗(r))− ln
∑

i1,...,ir∈I

∑
j∈I

e
−

Ai1,...,ir,j
>z∗

π
(r)
i1,...,ir + H(π(r)) =

= −
∑

i1,...,ir∈I

∑
j∈I

π
(r)
i1,...,ir

P
∗(r)
i1,...,ir,j

(
−Ai1,...,ir,j

>z∗

π
(r)
i1,...,ir

)
=

=
m∑

k=1

 ∑
i1,...,ir∈I

∑
j∈I

ak;i1,...,ir,jP
∗(r)
i1,...,ir,j

 z∗k =
m∑

k=1

bkz
∗
k,

and hence H(r)(P∗(r)) = d(z∗).
Finally, according to Theorem 2.1 it follows that

H(r)(P∗(r)) = d(z∗) ≥ H(r)(P(r)),
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for any feasible solution P(r) of problem (P ), so P∗(r) is an optimal solution
for this problem. �

Remark 3.1. In the particular case when problem (P ) has not additional
constraints, i.e., this problem has only the obligatory constraints (4) and (5),
we can solve the corresponding dual problem (D) and, by using Theorem 3.1,
we obtain that problem (P ) has an unique optimal solution P∗(r) given by

P
∗(r)
i1,...,ir,j = π

(1)
j , ∀i1, . . . , ir, j ∈ I,

and its optimal value is

H(r)(P∗(r)) = H(π(1)).

We mention that this result can also be obtained by using the properties of
the conditional entropy (see Preda and Bălcău [16]).

Remark 3.2. By taking r = 1 we regain the result of Gerchak [3] con-
cerning the maximum entropy of simple Markov chain.
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