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We give an upper bound for the box dimension of an invariant set of a differentiable
function f : U →M . Here U is an open subset of a Riemannian manifold M .
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1. INTRODUCTION

Let f : M → M be a C1-diffeomorphism defined on a Riemannian mani-
fold M . A compact subset K of M is called invariant set of f if f(K) ⊂ K. K
is usually a fractal set and it is interesting to compute or estimate the fractal
dimension of K. Invariant set theories have many applications in dynamical
systems and chaos. Put fm = f ◦ f ◦ · · · ◦ f (m-times) and define

b = lim
m→∞

1
m

log(min{|det(Dxfm)|; x ∈ K}),

s = lim
m→∞

1
m

log(max{‖Dxfm‖; x ∈ K}).

C. Wolf proved (in [6]) that, if M = Rn and b > 0, then s > 0 and

dimBK ≤ n− b

s
< n.

Here, dimBK denotes the upper box dimension of K. Wolf’s theorem has
been generalized to complete Riemannian manifolds with non-negative Ricci
curvature (see [2]). In this paper, we generalize Wolf’s theorem, to complete
Riemannian manifolds (without conditions on curvature), as follows:

Theorem 1.1. Let U be an open subset of a Riemannian manifold M
and f : U → M a C1-diffeomorphism on its image. Let K ⊂ U be a compact
f-invariant set. Define

b = lim
m→∞

1
m

log(min{|det Dxfm|, x ∈ K}),

s = lim
m→∞

1
m

log(max{‖Dxfm‖, x ∈ K}).
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If b > 0, then s > 0 and

dimBK ≤ n− b

s
< n.

2. PRELIMINARIES

Let M and N be Riemannian manifolds and f : M → N be a differen-
tiable function. We denote the tangent map of f at the point x ∈ M by Dxf
and the norm of f at that point, is defined by

‖Dxf‖ = sup{|Dxf(v)| : v ∈ TxM ; |v| = 1}.

If A ⊂ M then the following set is called the ε-neighborhood of A

Bε(A) = {x ∈ M : d(x, a) < ε for some a ∈ A}.

If A is bounded then the upper box dimension of A is defined (see [3]) by

dimBA = lim sup
δ→0

log(mδA)
− log δ

.

Here, mδA is the maximum number of disjoint balls of radius δ with the centers
contained in A.

Theorem 2.1 (see [4, p. 143]). Let cn be the volume of the unit ball
{x : |x| ≤ 1} in Rn, M be a Riemannian manifold of dimension n and S(x)
be the scalar curvature of M at the point x ∈ M . Then

vol(Br(x)) = cnrn

(
1− r2

6(n + 2)
S(x) + o(r2)

)
.

Lemma 2.2. If K is a compact subset of M then

dimBK ≤ n + lim sup
ρ→0

log(vol(BρK))
− log(ρ)

.

Proof. Let mρ(K)=m be the maximum number of the points {x1, . . . , xm}
in K such that the balls {Bρ(x1), . . . , Bρ(xm)} are disjoint. We have

vol(BρK) ≥ vol(Bρ(x1)) + · · ·+ vol(Bρ(xm)).

Choose the number r > 0 small enough, such that the set E = BrK be
compact. By Theorem 2.1,

vol(Bρ(x)) = cnρn

(
1− S(x)ρ2

6(n + 2)
+ o(ρ2)

)
.
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We can choose the positive number ρ so small that Bρ(K) ⊂ E. The continu-
ous function S : M → R, has maximum and minimum on the compact set E.
Thus there is a constant number α such that for each x ∈ K

vol(Bρ(x)) ≥ cnρn

(
1− αρ2

6(n + 2)
+ o(ρ2)

)
.

Therefore,

vol(BρK) ≥ mρ(K)cnρn

(
1− αρ2

6(n + 2)
+ o(ρ2)

)
.

Then

lim sup
ρ→0

log(vol(BρK))
− log ρ

≥ lim sup
ρ→0

log mρ(K)
− log ρ

− n.

This gives the result. �

We recall that for each point x in a Riemannian manifold M , there are
normal open balls around x (see [4, p. 89, Theorem 2.92]). If a point y belongs
to a normal ball Br(x), there is a minimizing geodesic in Br(x), joining x to
y (a geodesic λ : [0, 1] → Br(x) such that the length of λ is equal to d(x, y)).

Remark 2.3 (see [2]). Let B ⊂ U be an open subset of a Riemannian
manifold M and ϕ : U → M a C1-map. If B is bounded then

vol(ϕ(B)) ≥ inf
x∈B

|det Dxϕ| vol(B)

which is called the transformation formula.

3. PROOF OF THE THEOREM

Consider a number δ > 0. Since K is compact, by definition of b, s
and continuity arguments, there is a number k = kδ ∈ N and a positive real
number ε, such that for each x ∈ Bε(K)

(1) 1 < exp(k(b− δ)) < |det Dxfk|

and

(2) ‖Dxfk‖ < exp(k(s + δ)).

Also, we can choose ε so small that for each x ∈ K and each positive number
µ ≤ ε, Bµ(x) be a normal open ball around x. From now on consider the map
g = fk and put

rm =
ε

(exp k(s + δ))m
, m ∈ N.
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Let x ∈ K, d(x, y) < r1 and consider a minimizing geodesic λ : [0, 1] → Br1
(x)

joining x to y. We have

d(g(x), g(y)) ≤
∫ 1

0
|(g(λ(t)))′|dt =

∫ 1

0
|(D

λ(t)
g)(λ′(t))|dt ≤

≤
∫ 1

0
‖Dλ(t)g‖ · |λ′(t)|dt ≤ exp(k(s + δ))

∫ 1

0
|λ′(t)|dt =

= exp(k(s + δ))d(x, y) < exp(k(s + δ))r1 = ε.

This means that g(y) ∈ Bε(g(x)). Since g(K) ⊂ K then g(y) ∈ BεK. There-
fore,

(3) g(Br1
K) ⊂ BεK.

Now, let x ∈ K and d(x, y) < r2. We have

d(g2(x), g2(y)) ≤
∫ 1

0
|(g2(λ(t)))′|dt ≤

∫ 1

0
‖D

λ(t)
g‖ · ‖D

g(λ(t))
g‖ · |λ′(t)|dt.

Since λ(t) ∈ Br1
K, then by (3) we have g(λ(t)) ∈ BεK, so

‖D
g(λ(t))

g‖ ≤ exp(k(s + δ)).

Thus

(4) d(g2(x), g2(y)) ≤ (exp(k(s + δ)))2
∫ 1

0
|λ′(t)|dt = (exp(k(s + δ)))2r2 = ε.

Since g2(K) ⊂ K, by using (4), we get

g2(Br2
K) ⊂ BεK.

In a similar way and by induction, we can show that

(5) gm(Brm
(K)) ⊂ Bε(K).

By Remark 2.3, we have

(6) vol(gm(Brm(K))) ≥ inf
x∈(Brm

K)
|det Dxgm| vol(Brm(K)).

By (1), we have |det Dxg| > exp(k(b− δ)), so |det Dxgm| > (exp(k(b− δ)))m.
Thus by (6)

(7) vol(Brm(K)) ≤ (exp(k(b− δ)))−m vol(gm(Brm(K)).

Let volBε(K) = C. Using (5) and (7) we get

(8) vol(Brm(K)) ≤ (exp(k(b− δ)))−mC.
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Therefore,

lim sup
ρ→0

log(vol(Bρ(K)))
− log(ρ)

= lim sup
rm→0

log(volBrm(K))
− log(rm)

≤

≤ lim
m→∞

log(exp(k(b− δ))−mC)
− log( ε

exp(k(s+δ))m )
= − b− δ

s + δ
.

Since δ is arbitrary small, then

(9) lim sup
ρ→0

log(vol(Bρ(K)))
− log(ρ)

≤ −b

s
.

Now by (9) and Lemma 2.2, we get

dimBK ≤ n− b

s
. �

4. SOME APPLICATIONS

Let M be a smooth n-dimensional Riemannian manifold and V : U →
TM be a C1-vector field and let us consider the corresponding differential
equation ẋ = V (x). The differential equation generates a flow ϕt : U → M .
Consider the covariant derivative ∇V and let S = 1

2(∇V +∇V t). Denote the
eigenvalues of S by λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x) ordered with respect to size
and multiplicity. Now for k = 1, 2, . . . n, put divk V (x) = λn−k+1(x) + · · · +
λn(x) and let

Λm,K(V ) = min
x∈K

divm V (x),ΘK = max
x∈K

div V (x).

The following theorem gives an upper bound estimate for box dimension of
ϕt-invariant sets.

Theorem 4.1. If M is a Riemannian manifold and K is a compact
ϕt-invariant set for some t > 0, and

ΘK(V )− Λn−1,K(V ) ≥ 1
n

Λn,K(V ) > 0.

Then

dimBK ≤ n−
Λn,K(V )

ΘK(V )− Λn−1,K(V )
.

Proof. This theorem is proved in [2] for Riemannian manifolds of non-
negative Ricci curvature. The proof is based on techniques used in [5] (which
are not dependent on curvature) and the relation dimBK ≤ n − b

s , which we
have proved for complete Riemannian manifolds. Thus the proof is valid also
for all complete Riemannian manifolds. �
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As another application, we give an upper bound for the box dimension of
an invariant set of a conformal map. Recall that a differentiable map f : M →
M on a Riemannian manifold M is called conformal if there is a differentiable
positive function λ : M → R such that for each x ∈ M and V,W ∈ TxM
we have 〈Dxf(V ), Dxf(W )〉 = (λ(x))2〈V,W 〉 (〈 , 〉 is the inner product of
vectors). The function λ is called the conformal coefficient of f .

Corollary 4.2. Let U be an open subset of a complete Riemannian
manifold M and f : U → M a conformal diffeomoprphism on its image with
the conformal coefficient λ, and let K be a compact f-invariant subset of U .
Then we have

dimBK ≤ n

(
1− minx∈K λ(x)

maxx∈K λ(x)

)
.

Proof. Since |Dxf(V )| = λ(x)|V |, then

|Dxfm(V )| = λ(x)λ(f(x)) . . . λ(fm−1(x))|V |.

Thus

‖Dxfm‖ = sup{|Dxfm(V )| : |V | = 1} =

= λ(x)λ(f(x)) . . . λ(fm−1(x)) ≤ (max{λ(x) : x ∈ K})m.

Then, we have

(10) s ≤ log(max{λ(x) : x ∈ K}).

The linear map 1
λ(x)Dxf : TxM → Tf(x)M is an isometry, so∣∣∣∣det

(
1

λ(x)
Dxf

)∣∣∣∣ = 1 ⇒ |det Dxf | = (λ(x))n.

Then

|det Dxfm| = |(detDxf)(detDf(x)f) . . . (detDfm−1(x)f)|
= (λ(x)λ(f(x)) . . . λ(fm−1(x)))n

⇒ min{|det Dxfm| : x ∈ K} ≥ (min{λ(x) : x ∈ K})mn.

Therefore,

(11) b ≥ n log(min{λ(x) : x ∈ K}).

Now, by (10) and (11) and our main theorem, we get the result. �
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4.1. The Lorenz model and Henon maps

The Lorenz model is a well known model in physics (see [3, p. 186]). E.
Lorenz derived this model from equations arising in atmosphere physics. The
Lorenz model has important implications for climate and weather prediction.
To study the attractor and periodic orbits of the Lorenz system, the Poincare
section-maps play an important role. We recall that a Poincare section is a
two dimensional manifold S which is transversal to the flow of the Lorenz
system. Let a Poincare section S be a plane and r(t) be an orbit intersecting
S. If x is a point in S, contained in r(t), then we have x = r(tx), for some real
number tx. Let t′x = inf{t : t > tx and r(t) ∈ S}. A Poincare section- map
is defined by P : S(' R2) → S(' R2), P (x) = r(t′x). Simplified models of
the Poincare-section maps are Henon maps. We recall that a Henon map is a
polynomial diffeomorphisms of the form f : R2 → R2, f(x, y) = (y, g(y) + ax)
where g(y) is a real polynomial of degree at least two and a is a non-zero real
number. Let K be the union of periodic orbits of f . K is a compact invariant
set of f . If |a| < 1 then by using Theorem 1.1, one can show that

(∗) dimBK ≤ 2− log(|a|−1)
s

.

If f has an attractor then (∗) gives also an upper bound for the box dimension
of the attractor.

5. CONCLUSION

1. The inequality dimBK ≤ n− b
s theoretically gives a good upper bound

estimate. But calculation of b and s is not easy in general, because max and
min in the formula of b and s are taken on invariant set K, which is not
characterized in general. When M is compact then the continuous functions
|det Df |, ‖Df‖ : M → R have maximum and minimum which may be useful,
for estimating b and s. Also the mean values e = 1

Vol(M)

∫
M |det Df | and

g = 1
Vol(M)

∫
M ‖Df‖ may give good bounds for b and s.

2. Because the box dimension of a set is always greater or equal to its
Hausdorff dimension, the inequality of our theorem, also gives an upper bound
for the Hausdorff dimension.

3. If the f -invariant set K admits an equivariant splitting of the tangent
bundle, one can see other estimates for Hausdorff dimension of K in [5].

4. Our theorem is about forward f -invariant sets. A compact set is called
backward f -invariant if f−1(K) ⊂ K. By similar way to this paper, we can
find upper bound for box dimension of backward invariant sets, related to the
values and behaviour of det Dxf and ‖Dxf‖, x ∈ K.
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