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The aim of the paper is to give necessary and sufficient conditions for the attractor
of a recurrent iterated function system to be arcwise connected. Recurrent iterated
function systems are a generalization of iterated function systems. Instead of
taking contractions from a metric space (X, d) to itself in the definition of an
iterated function system we take contractions from X ×X to X.
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1. INTRODUCTION

Iterated function systems (IFSs) were conceived in the present form by
John Hutchinson [4] and popularized by Michael Barnsley [1] and are one of
the most common and most general ways to generate fractals. Many of the
important examples of sets and functions with special and unusual properties
in analysis turn out to be fractal sets or functions whose graph are a fractal
sets and a great part of them are attractors of IFSs. There is a current effort
to extend the classical Hutchinson’s framework to more general spaces and
infinite iterated function systems (IIFSs) or more generally to multifunction
systems and to study them. A recent such extension of the IFS theory can be
found in [7], where the Lipscomb’s space-which was an important example in
dimension theory – can be obtained as an attractor of an IIFS defined in a very
general setting. In this setting the attractor can be a closed and bounded set
in contrast with the classical theory where only compact sets are considered.
Although the fractal sets are defined with measure theory – being sets with
noninteger Hausdorff dimension [2], [3] – it turns out that they have interesting
topological properties as we can see from the above example [7]. One of the
most important result in this direction is given in Theorem 1.2 below (see [11]
for a proof) which states when the attractor of an IFS is a connected set. We
intend to extend this result to recurrent iterated function system (see [8], [9];
see [5], [6] for a generalization of results from [8]).

MATH. REPORTS 13(63), 4 (2011), 363–376



364 Alexandru Mihail and Nicolae-Adrian Secelean 2

The paper is divided in four parts. The first part is the introduction.
In the second part is given the description of the shift space of a recurrent
iterated function system. The main result, Theorem 3.1, is contained in the
third part. The last part contains some examples.

We start by a short presentation of recurrent iterated function systems,
RIFS for short. We will also fix the notations.

Let (X, d) be a metric space and A ⊂ X. By δ(A) we understand the
diameter of A, i.e., δ(A) = sup

x,y∈A
d(x, y).

Let (X, d) be a metric space and K(X) be the set of nonvoid compact
subsets ofX. K(X) with the distance Hausdorff-Pompeiu h : K(X)×K(X) →
[0,+∞) defined by

h(A,B) = max(D(A,B), D(B,A)),

where

D(A,B) = sup
x∈A

d(x,B) = sup
x∈A

(
inf
y∈B

d(x, y)
)
.

is a metric space.
(K(X), h) is a complete metric space provided that (X, d) is a complete

metric space, compact provided that (X, d) is compact and separable provided
that (X, d) is separable (see [1], [2] or [10]).

For a function f : X → X let us denote by Lip(f) ∈ [0,+∞] the Lipschitz
constant associated to f ,

Lip(f) = sup
x,y∈X;x 6=y

d(f(x), f(y))
d(x, y)

.

f is a Lipschitz function if Lip(f) < +∞ and a contraction if Lip(f) < 1.
For a function f : X ×X → X the number

Lip(f) = sup
x,y,x1,y1∈X;
x6=y or x1 6=y1

d(f(x, x1), f(y, y1))
max{d(x, y), d(x1, y1)}

is named the Lipschitz constant of f .
The function f : X × X → X is a Lipschitz function if Lip(f) < +∞

and a contraction if Lip(f) < 1.
An iterated function systems on X consists of a finite family of contrac-

tions (fk)k=1,n on X and it is denoted by S = (X, (fk)k=1,n).
A recurrent iterated function systems on X consists of a finite family of

contractions (fk)k=1,n, fk : X ×X → X and is denoted by S = (X, (fk)k=1,n).
For an IFS (respectively for a RIFS) FS : K(X) → K(X) (respectively

FS : K(X)×K(X) → K(X) for a RIFS) is the function defined by FS(B) =
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n⋃
k=1

fk(B) (respectively by FS(K,H) =
n⋃
k=1

fk(K,H) for a RIFS, where for a

function f : X ×X → X, f(K,H) = f(K ×H) = {f(x, y) | x ∈ K, y ∈ H}).
The function FS is in both cases a contraction with

Lip(FS) ≤ max
k=1,n

Lip(fk).

We remark that every IFS is a particular case of a RIFS.
Using the Banach contraction theorem there exists, for an IFS or a RIFS,

a unique set A(S) such that FS(A(S)) = A(S), respectively FS(A(S), A(S)) =
A(S). We state the results for RIFS (see [8], [9] or [5], [6] for a general case).

Theorem 1.1. Let (X, d) be a complete metric space and S = (X,
(fk)k=1,n) be a RIFS with c = max

k=1,n
Lip(fk) < 1. Then there exists a

unique set A(S) ∈ K(X) such that FS(A(S), A(S)) = A(S). Moreover, for
any H0,H1 ∈ K(X) the sequence (Hn)n≥1 defined by Hn+1 = FS(Hn,Hn−1)
is convergent to A(S). For the speed of the convergence we have the following
estimation

h(Hn, A(S)) ≤ 2c[
n
2 ]

1− c
max

{
h(H0,H1), h(H1,H2)

}
.

Definition 1.1. Let (X, d) be a metric space and (Ai)i∈I a family of non-
void subsets of X. The family (Ai)i∈I is said to be connected if for every
i, j ∈ I there exists (ik)k=1,n ⊂ I such that i1 = i, in = j and Aik ∩Aik+1

6= ∅
for every k ∈ {1, 2, . . . , n− 1}.

Definition 1.2. A metric space (X, d) is arcwise connected if for every
x, y ∈ X there exists a continuous function ϕ : [0, 1] → X such that ϕ(0) = x
and ϕ(1) = y.

Concerning the connectivity of the attractor of an IFS we have the fol-
lowing theorem (see [11]).

Theorem 1.2. Let (X, d) be a complete metric space, S = (X, (fk)k=1,n)
be an IFS with c = max

k=1,n
Lip(fk) < 1 and A(S) be the attractor of S. The

following three statements are equivalent:
(1) the family (Ai)i=1,n is connected, where Ai = fi(A(S));
(2) A(S) is arcwise connected;
(3) A(S) is connected.

We want to prove a similar result for a RIFS.
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2. THE SHIFT SPACE FOR A RIFS

In this section we describe the construction of the shift space of a RIFS
and we present the main properties concerning the relation between the at-
tractor of a RIFS and the shift space. The shift space for a RIFS will be used
in the proof of Theorem 3.1. The proofs can be found in [9].

Through this section (X, d) will be a fixed complete metric space and
S =

(
X, (fk)k=1,n

)
a fixed RIFS with n functions.

We will start with some notations: k, l, m, i, j, m′, ij denote natural
numbers, if we do not say otherwise, N denotes the set of natural number,
N∗ = N\{0} and N∗

n = {1, 2, . . . , n}.
For a nonvoid set I and a family of functions fi : Xi → Yi where i ∈ I,

×
i∈I
fi denotes the function ×

i∈I
fi : ×

i∈I
Xi → ×

i∈I
Yi defined by ×

i∈I
fi((xi)i∈I) =

(fi(xi))i∈I .
Let Ωk = N∗

n2k−1 for k ∈ N∗. On Ωk we consider the discrete metric

dk : Ωk × Ωk → R+ given by dk(x, y) = 1− δyx where δyx =
{

1 if x = y
0 if x 6= y

.

Let us fix a bijection φk between Ωk×Ωk = N∗
n2k−1 ×N∗

n2k−1 and Ωk+1 =

N∗
n2k given by φk(a, b) = n2k−1

(a− 1) + b.
Let pk1 : Ωk × Ωk → Ωk and pk2 : Ωk × Ωk → Ωk be defined by pk1(x, y) =

x and pk2(x, y) = y.
Let ψk1 : Ωk+1 → Ωk and ψk2 : Ωk+1 → Ωk be defined by ψk1 (x) = pk1 ◦

(φk)−1(x) and ψk2 (x) = pk2 ◦ (φk)−1(x).
More general we consider φlk : (Ωl)2

k−l → Ωk, the function defined by

φlk = φk−1 ◦ (φk−2 × φk−2) ◦ · · · ◦
(

2k−l−1

×
i=1

φl

)
for 0 < l < k.

In particular, φ(k−1)k = φk−1.
Also, let θk : Ωk → Ωk−1 × Ωk−1 be the inverse of φk−1 and θkl : Ωk →

(Ωl)2
k−l

be the inverse of φlk. That is θk = φ−1
k−1 and

θkl =
(

2k−l−1

×
i=1

φ−1
l

)
◦

(
2k−l−2

×
i=1

φ−1
l−1

)
◦ · · · ◦

(
φ−1
k−2 × φ−1

k−2

)
◦ φ−1

k−1 =

=
(

2k−l−1

×
i=1

θl+1

)
◦

(
2k−l−2

×
i=1

θl

)
◦ · · · ◦ (θk−1 × θk−1) ◦ θk for k > l > 0.

Set pnj = pn,Xj : X2n → X, pn,lj (x1, x2, . . . , x2n) = xj where X is a

nonvoid set. In particular, if X = Ωl set pn,lj = pn,Ωl
j . Then pn,lj : (Ωl)2

n → Ωl,

pn,lj (x1, x2, . . . , x2n) = xj .
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Set also τk,lj = pk−l,lj ◦θkl : Ωk → Ωl for 0 < l < k and j ∈ {1, 2, . . . , 2k−l}.

Remark 2.1. With the above notations we have
(1) τk+1,k

j = ψkj , where j ∈ {1, 2}.

(2)
(

2k−l

×
i=1

θlm

)
◦ θkl = θkm, where 0 < m < l < k.

(3) pm,li2
◦ pm

′,X
i1

= pm
′+m,l

i2+2m(i1−1), where m′,m, l ∈ N∗, i1 ∈ {1, 2, . . . , 2m
′},

i2 ∈ {1, 2, . . . , 2m} and X = (Ωl)2
m

.

(4) θmk ◦ pu,mi = pu,Xi ◦
(

2u

×
i=1

θmk

)
, where 0 < k < m, u ∈ N∗ and

X = (Ωk)2
m−k

. In particular if u = l −m we obtain θmk ◦ pl−m,mi = pl−m,Xi ◦(
2l−m

×
i=1

θmk

)
, where k < m < l and X = (Ωk)2

m−k
.

(5) τm,kj ◦ τ l,mi = τ l,k
j+2m−k(i−1)

, where k < m < l.

(6) τk,lj = ψli1 ◦ ψ
l+1
i2

◦ · · · ◦ψkik−l
, where k < l, i1, i2, . . . , ik−l ∈ {1, 2} and

j = i1 + (i2 − 1)2 + · · ·+ (ik−l − 1)2k−l−1.

Definition 2.1. The space (Ω, dΩ), where Ω = ×
k≥1

Ωk, and dΩ is the dis-

tance dΩ : Ω×Ω → R+ given by dΩ(α, β) =
∑
k≥1

dk(αk,βk)
3k =

∑
k≥1

1−δβk
αk

3k is named

the shift space or the code space for a RIFS with n components. An element
ω ∈ Ω will be written as an infinite word ω = ω1ω2 . . . ωmωm+1 . . . where
ωm ∈ Ωm. In other words, Ω = {f : N∗→ N∗ | such that f(k) ≤ n2k−1}.

We remark that the convergence in (Ω, dΩ) is in fact the convergence on
components.

Lemma 2.1. (Ω, dΩ) is a compact metric space.

Definition 2.2. Let Fk : Ω × Ω → Ω be defined by Fk(α, β) = ω =
kφ1(α1, β1)φ2(α2, β2) . . . φm(αm, βm) . . . that is ω1 = k and ωm = φm−1(αm−1,
βm−1) for k ∈ {1, 2, . . . , n}.

Definition 2.3. (1) Let R1 : Ω → Ω be the function defined by R1(ω) =
ψ1

1(ω2)ψ2
1(ω3) . . . ψm1 (ωm+1) . . . that is (R1(ω))n = ψn1 (ωn+1).

(2) LetR2 : Ω → Ω be defined byR2(ω) = ψ1
2(ω2)ψ2

2(ω3) . . . ψm2 (ωm+1) . . .
that is (R2(ω))n = ψn2 (ωn+1).

(3) Let R : Ω → Ω× Ω be defined by R(α) = (R1(α), R2(α)).

Remark 2.2. R is a continuous function.



368 Alexandru Mihail and Nicolae-Adrian Secelean 6

Lemma 2.2. The functions Fk : Ω × Ω → Ω defined as above are con-

tractions with Lipschitz constant less than 2/3 and Ω =
n⋃
k=1

Fk(Ω,Ω). In other

words, Ω is the attractor of the RIFS (Ω, (Fk)k=1,n).

Let [Ω]m =
m
×
k=1

Ωk =
{
f : N∗

m → N∗ | such that f(k) ≤ n2k−1}
. The

elements of [Ω]m will be represented by words of length m, ω = ω1ω2 . . . ωm,
where ωk ∈ Ωk. Ω∗ =

⋃
m≥1

[Ω]m is the set of all finite words. For ω ∈ Ω∗, |ω|

denotes the length of ω. If ω ∈ Ω then |ω| = +∞.
As above, if ω = ω1ω2 . . . ωmωm+1 . . . then [ω]m = ω1ω2 . . . ωm and [ω]m ∈

[Ω]m. For α ∈ Ω∗ and β ∈ Ω∗ or β ∈ Ω we denote α ≺ β if |α| ≤ |β| and
[β]|α| = α.

The functions Fk, for k ∈ {1, 2, . . . , n}, and R,R1, R2 as above can be
defined in a similar way on finite words on which they have similar properties.

Let ω ∈ [Ω]m. We are going to define the function fω :
2m

×
k=1

X → X and its

extension fω :
2m

×
k=1

P (X) → P (X). We will use the same notations for fω and

for its extension. Since fω is a continuous function, one has fω
( 2m

×
k=1

K(X)
)
⊂

K(X) and so we can consider fω :
2m

×
k=1

K(X) → K(X).

The construction will be made by induction with respect to the length
of the word ω.

For ω = ω1ω2ω3 . . . ∈ Ω we have:
f[ω]1 = fω1 , where fω1 : X×X → X is the ω1 function from the definitions

of the RIFS S = (X, (fk)k=1,n);
f[ω]2 = fω1ω2 is the function f[ω]2 : X ×X ×X ×X → X given by

f[ω]2(x1, x2, x3, x4) = f[ω]1(fψ1
1(ω2)(x1, x2), fψ1

2(ω2)(x3, x4)) =

= f[ω]1(fτ2,1
1 (ω2)

(x1, x2), fτ2,1
2 (ω2)

(x3, x4)).

In general,

f[ω]m(x1, x2, . . . , x2m) =

= f[ω]1(fR1([ω]m)(x1, x2, . . . , x2m−1), fR2([ω]m)(x2m−1+1, x2m−1+2, . . . , x2m)).

Let (X, d) be a complete metric space and S = (X, (fk)k=1,n) be a RIFS.
Let H,Hk ⊂ X be sets. Then

f[ω]m(H1,H2, . . . ,H2m) = f[ω]m(H1 ×H2 × · · · ×H2m) =

= {f[ω]m(x1, x2, . . . , x2m) | xk ∈ Hk}
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and

H[ω]m = f[ω]m(H,H, . . . ,H).

Notation 2.1. Let (X, d) be a complete metric space, m ∈ N∗ and let

f :
m
×
k=1

X → X be a contraction. We denote by ef the fixed point of f . If

f = fω then we denote by efω or by eω the fixed point of f = fω.

The main properties of the shift space and its relation with the attractor
of a RIFS is contained in the following theorem.

Theorem 2.1. If A=A(S) is the attractor of the RIFS S=(X, (fk)k=1,n)
then:

(1) For ω ∈ Ω, one has A[ω]m+1
⊂ A[ω]m. In other words, if α ∈ Ω∗ and

β ∈ Ω∗ such that α ≺ β then Aβ ⊂ Aα.
(2) δ(A[ω]m) → 0 when m→∞, more precisely δ(A[ω]m) ≤ cmδ(A).
(3) For every ω ∈ Ω there exists a unique aω such that {aω} =

⋂
m≥1

A[ω]m .

(4) We have A =
⋃

ω∈[Ω]1

fω(A,A) =
⋃

ω∈[Ω]1

Aω, Aω =
⋃

α∈Ω|ω|+1

Aωα for

ω ∈ Ω∗, A =
⋃

ω∈[Ω]m

fω(A,A, . . . , A) =
⋃

ω∈[Ω]m

Aω and Aω =
⋃

β∈[Ω]|ω|+n,ω≺β
Aβ .

(5) For ω ∈ Ω, e[ω]m ∈ A[ω]m ⊂ A and if aω is defined by {aω} =⋂
m≥1

A[ω]m , then d(e[ω]m , aω ) → 0 when m→∞.

(6) A =
⋃
ω∈Ω

{aω} and the set {e[ω]m | ω ∈ Ω and m ∈ N∗} is dense in

A. Similarly, Aα =
⋃

ω∈Ω,α≺ω
{aω} for every α ∈ Ω∗ and the set {e[ω]m | ω ∈ Ω,

α ≺ ω and m ∈ N∗} is dense in Aα.
(7) The function π : Ω → A defined by π(ω) = aω is continuous and

surjective.
(8) fk(A[α]m , A[β]m) = A[Fk(α,β)]m+1

and π(Fk(α, β)) = fk(π(α), π(β))
for every α, β ∈ Ω and k ∈ {1, 2, . . . , n}.

3. THE MAIN RESULT

For the proof of the main result (Theorem 3.1) we need the following
lemma.

Lemma 3.1. Let(X, d) be a complete metric space and (an)n≥1 be a se-
quence of positive numbers convergent to 0. Let (∆l)l≥0 be a sequence of divi-
sions of the unit interval [0, 1] (i.e., ∆l = (yl0 = 0 < yl1 < · · · < ylnl

= 1)) such

that ∆l ⊂ ∆l+1, lim
l→+∞

‖∆l‖ = 0, where ‖∆l‖ =
nlmax
i=1

(yli−yli−1). Let (gl)l≥0 be
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a sequence of functions gl : ∆l → X such that gl+1|∆l
= gl and for every m ≥

n and every ymi ∈ ∆m, max{d(gm(ymi ), gn(ynj )), d(gm(ymi ), gn(ynj+1))} ≤ an
whenever ymi ∈ [ynj , y

n
j+1]. Then there exists a continuous function g : [0, 1] →

X such that g|∆l
= gl.

Proof. Let A =
⋃
n≥1

∆n and g̃ : A → X be the function defined by

g̃(x) = gl(x) if x ∈ ∆l. The function g̃ is well defined because gm|∆l
= gl for

every m ≥ l. We intend to prove that g̃ is uniformly continuous. Let ε > 0
be fixed. Since the sequence (an)n≥1 is convergent to 0, there exists nε such

that for every n ≥ nε an < ε/2. Set δl =
nl

min
i=1

(
yli− yli−1

)
and δ = δnε . We have

0 < δl+1 ≤ δl ≤ ‖∆l‖.
Let c, d ∈ [0, 1] ∩ A be such that c < d and d − c < δ. There exists

m0 ≥ nε such that c, d ∈ ∆m0 . The set (c, d) ∩∆nε has at most one element.
If (c, d) ∩∆nε = ∅, then there exists a j ∈ {0, 1, . . . , nnε − 1} such that

ynε
j ≤ c < d ≤ ynε

j+1. In this case we have

d(g̃(c), g̃(d)) = d(gm0(c), gm0(d)) ≤
≤ d(gm0(c), gnε(y

nε
j )) + d(gnε(y

nε
j ), gm0(d)) ≤ 2anε < ε.

If (c, d) ∩∆nε = {ynε
j } we have ynε

j−1 < c < ynε
j < d < ynε

j+1 and

d(g̃(c), g̃(d)) = d(gm0(c), gm0(d)) ≤
≤ d(gm0(c), gnε(y

nε
j )) + d(gnε(y

nε
j ), gm0(d)) ≤ 2anε < ε.

It follows that g̃ is an uniformly continuous function. Then there exists
a unique continuous function g : [0, 1] → X such that g|A = g̃. We also have
g|∆l

= gl.

Theorem 3.1. Let (X, d) be a complete metric space, S = (X, (fk)k=1,n)
be a RIFS, c = max

k=1,n
Lip(fk) < 1 and A = A(S) be the attractor of S. The

following three statements are equivalent:
(1) The family (Ai)i=1,n is connected, where Ai = fi(A(S), A(S));
(2) A(S) is arcwise connected;
(3) A(S) is connected.

Proof. Firstly we remark that, according to Theorem 1.1, we have A(S) ∈
K(X) and so Aω = A(S)ω = fω(A(S), A(S), . . . , A(S)) ∈ K(X) for every
ω ∈ Ω∗. We can suppose that δ(A(S)) 6= 0. The case δ(A(S)) = 0 is obvious.
In this case the set A contains one point and A = Aω for every ω ∈ Ω∗.

(2) ⇒ (3) is obvious, since every arcwise connected set is connected.
(3) ⇒ (1) Let M be {j ∈ {1, 2, . . . , n}| there exist (ik)k=1,m such that

i1 = 1, im = j and Aik ∩Aik+1
6= ∅ for every k ∈ {1, 2, . . . ,m− 1}}.
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Set V1 =
⋃
j∈M

Aj and V2 =
⋃
j /∈M

Aj . Then V1 ∩ V2 = ∅, V1 ∪ V2 = A(S)

and V1 and V2 are compact sets. Since A(S) is connected and V1 6= ∅ (because
A1 ⊂ V1) it follows that A(S) = V1.

(1) ⇒ (2) For every indexes i and j such that Ai∩Aj 6= ∅ let us fix xi,j ∈
Ai∩Aj . Also, for every indexes i and j let us fix (ik)k=1,m(i,j)

such that i1 = i,
im(i,j) = j and Aik ∩Aik+1

6= ∅ for every k ∈ {1, 2, . . . ,m(i, j)−1}. The family
of indexes (ik)k=1,m(i,j)

can be taken without repetition. Then m(i, j) ≤ n.
We can suppose that m(i, j) = n (by taking Ain = · · · = Aim(i,j)+1

= Aim(i,j)
).

Since A(S) =
n⋃
i=1
fi(A(S), A(S)), it follows that for every z there exists

i(z) such that z ∈ Ai(z) = fi(z)(A(S), A(S)). Let i : A → {1, 2, . . . , n} be a
fixed function such that z ∈ i(z).

Then, for every two elements z0 and z1, we have fixed Ai(z0) and Ai(z1), a
family of indexes (ik)k=1,n such that i1 = i(z0), in = i(z1) and Aik ∩Aik+1

6= ∅
for every k ∈ {1, 2, . . . , n − 1} and elements xik,ik+1

∈ Aik ∩ Aik+1
for k ∈

{1, 2, . . . , n− 1}. Set w0(z0, z1) = z0, wn(z0, z1) = z1, ik(z0, z1) = ik for every
k ∈ {1, 2, . . . , n} and wk(z0, z1) = xik,ik+1

for every k ∈ {1, 2, . . . , n − 1}. We
remark that wk(z0, z1), wk+1(z0, z1) ∈ Aik(z0,z1) for every k ∈ {0, 1, . . . , n− 1}.

Let x0 and x1 be two fixed different elements from A(S) . We will define
by induction after l ∆l = (yl0 = 0 < yl1 < · · · < yl

nl = 1), divisions of the unit
interval [0, 1], the functions gl : ∆l → A(S) and the elements ωlk ∈ [Ω]l, where
k ∈ {0, 1, . . . , nl− 1} such that ∆l ⊂ ∆l+1, gl+1|∆l

= gl, gl(ylk), gl(y
l
k+1) ∈ Aωl

k

for k ∈ {0, 1, . . . , nl − 1} and if l′ ≥ l and yl
′
k′ ∈ [ylk, y

l
k+1] then ωlk ≺ ωl

′
k′ .

Set ∆0 = (y0
0 = 0 < y0

1 = 1), g0(0) = z0 and g0(1) = z1.
Set ∆1 = (y1

0 = 0 < y1
1 < · · · < y1

n = 1), where y1
k = k

n , and g1(y1
k) =

wk(x0, x1) for k ∈ {0, 1, . . . , n}.
In general we will take ylk = k

nl . Then ylk = yl+1
kn and ∆l ⊂ ∆l+1.

Let us suppose that gl and ωlk for k ∈ {0, 1, . . . , nl − 1} are defined.
Let k ∈ {0, 1, . . . , nl − 1} be fixed. Then gl(ylk), gl(y

l
k+1) ∈ Aωl

k
. It follows

that g(ylk) = fωl
k
(z1, z2, . . . , z2l) and g(ylk+1) = fωl

k
(z′1, z

′
2, . . . , z

′
2l) for some

z1, z2, . . . , z2l , z′1, z
′
2, . . . , z

′
2l ∈ A(S). Set

gl+1(yl+1
kn+j)=fωl

k
(wj(z1, z′1), wj(z2, z

′
2), . . . , wj(z2l , z′2l)) for j∈{0, 1, . . . , n}.

We have

gl+1(yl+1
kn ) = fωl

k
(w0(z1, z′1), w0(z2, z′2), . . . , w0(z2l , z′2l)) =

= fωl
k
(z1, z2, . . . , z2l) = ylk
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and

gl+1(yl+1
kn+n) = fωl

k
(wn(z1, z′1), wn(z2, z

′
2), . . . , wn(z2l , z′2l)) =

= fωl
k
(z′1, z

′
2, . . . , z

′
2l) = ylk+1.

This means that gl+1 is well defined and gl+1|∆l
= gl.

Let j ∈ {0, 1, . . . , n} be fix. Then wj(zi, z′i), wj+1(zi, z′i) ∈ Aij(zi,z′i)
for

every i ∈ {1, 2, . . . , 2l}. Let ωl+1
kn+j = ωlkφ1l(ij(z1, z′1), ij(z2, z

′
2), . . . , ij(z2l , z′2l)).

Then

gl+1(yl+1
kn+j) = fωl

k
(wj(z1, z′1), wj(z2, z

′
2), . . . , wj(z2l , z′2l)) ∈

∈ fωl
k
(Aij(z1,z′1), Aij(z2,z′2), . . . , Aij(z2l ,z

′
2l )

) =

= Aωl
kφ1l(ij(z1,z

′
1),ij(z2,z′2),...,ij(z2l ,z

′
2l ))

= Aωl+1
kn+j

and

gl+1(yl+1
kn+j+1) = fωl

k
(wj+1(z1, z′1), wj+1(z2, z′2), . . . , wj+1(z2l , z′2l)) ∈

∈ fωl
k
(Aij(z1,z′1), Aij(z2,z′2), . . . , Aij(z2l ,z

′
2l )

) =

= Aωl
kφ1l(ij(z1,z

′
1),ij(z2,z′2),...,ij(z2l ,z

′
2l ))

= Aωl+1
kn+j

.

We also have that ωlk≺ω
l+1
kn+j . This implies that if l′ ≥ l then ωl

[ k

nl′−l
]
≺ωl′k .

The induction hypothesis are now cheeked.
Since, for every l and k ∈ {1, 2, . . . , nl}, gl(ylk), gl(ylk+1) ∈ Aωl

k
and ωlk ∈

[Ω]l, we have d(gl(ylk), gl(y
l
k+1)) ≤ δ(Aωl

k
) ≤ clδ(A).

We will apply Lemma 3.1 to the functions gl and divisions ∆l defined
above. We have seen that ∆l ⊂ ∆l+1 and gl+1|∆l

= gl. Since ‖∆l‖ = 1
nl ,

lim
l→+∞

‖∆l‖ = 0. Set al = clδ(A). Let l′ ≥ l and yl
′
k′ ∈ ∆l′ be fix. We have two

cases, yl
′
k′ ∈ ∆l and yl

′
k′ /∈ ∆l.

In the first case, yl
′
k′ ∈ ∆l, k′ = [ k′

nl′−l ]n
l′−l and yl

′
k′ = ylk, where k = [ k′

nl′−l ].
Then gl(ylk) = gl(yl

′
k′), gl(y

l
k+1) ∈ Aωl

k
,where ωlk ∈ [Ω]l, and so

d(gl(yl
′
k′), gl(y

l
k+1)) = d(gl(ylk), gl(y

l
k+1)) ≤ δ(Aωl

k−1
) ≤ clδ(A) = al.

Also, we have

d(gl(yl
′
k′), gl(y

l
k−1)) = d(gl(ylk), gl(y

l
k−1)) ≤ δ(Aω) ≤ clδ(A) = al.

In the second case we have yl
′
k′ ∈ (ylk, y

l
k+1), where k = [ k′

nl′−l ]. Then
ylk, y

l
k+1 ∈ Aωl

k
, ωlk ≺ ωl

′
k′ and yl

′
k′ ∈ Aωl′

k′
⊂ Aωl

k
. It follows that

max{d(gl′(yl
′
k′), gl(y

l
k)), d(gl′(y

l′
k′), gl(y

l
k+1))} ≤ δ(Aωl

k
) ≤ clδ(A) = al.
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In view of Lemma 3.1, there exists a continuous function g : [0, 1] → X
such that g|∆l

= gl. Since g(∆l) = gl(∆l) ⊂ A, g is a continuous function and
A is a compact set we have, g([0, 1]) ⊂ A. This proves that A is arcwise con-
nected.

4. EXAMPLES

Example 4.1. Every IFS can be seen as a RIFS. Indeed, let S = (X,
(fk)k=1,n) be an IFS. Let S = (X, (fk)k=1,n) be the RIFS defined by fk(x, y) =
fk(x). Then A(S) = A(S). In this way Theorem 1.1 is a particular case of
Theorem 3.1.

Example 4.2. LetX = R and g, f : R×R→ R be defined by f(x, y) = x
3+

y
3 and g(x, y) = x

3 + 2
3 . Let S = (R, (f, g)) be an RIFS. Let F : K(R)×K(R) →

K(R) be defined by F (K,H) = f(K,H)∪g(K,H). The attractor of S is [0, 1].
Indeed f([0, 1], [0, 1]) = [0, 2/3] ⊂ [0, 1] and g([0, 1], [0, 1]) = [2/3, 1] ⊂ [0, 1]
and so F ([0, 1], [0, 1]) = [0, 1]. It follows that A(S) = [0, 1].

We remark that A(S) is connected. We also remark that the family of
sets {Af (S) = f([0, 1], [0, 1]) = [0, 2/3], Ag(S) = g([0, 1], [0, 1]) = [2/3, 1]} is
connected.

Example 4.3. Let X = R and g, f : R× R → R be defined by f(x, y) =
x
5 + y

5 and g(x, y) = x
5 + y

5 + 3
5 . Let S = (R, (f, g)) be a RIFS. Let F :

K(R)×K(R) →K(R) be defined by F (K,H) = f(K,H) ∪ g(K,H). The at-
tractor of S is [0, 2/5] ∪ [3/5, 1]. Indeed

f([0, 2/5]∪[3/5, 1], [0, 2/5] ∪ [3/5, 1])=f([0, 2/5], [0, 2/5]) ∪ f([0, 2/5], [3/5, 1])∪
∪f([3/5, 1], [3/5, 1]) = [0, 4/25] ∪ [3/25, 7/25] ∪ [6/25, 2/5] = [0, 2/5].

In a similar way, g([0, 2/5] ∪ [3/5, 1], [0, 2/5] ∪ [3/5, 1]) = [3/5, 1].
We remark that A(S) = [0, 2/5]∪3/5, 1] is not connected. Moreover, the

family of sets {Af (S) = [0, 2/5], Ag(S) = [3/5, 1]} is not connected.

Example 4.4. Let X be one of the spaces lp, l∞ or c0 where p ≥ 1. The
elements of these spaces will be sequences of real numbers (xn)n≥1.

Let j : X → X, im : Rm→ X and π1 : X → R be given by

j(x1, x2, . . . , xm, . . .) = (0, x1, x2, . . . , xm, . . .),

im(x1, x2, . . . , xm) = (x1, x2, . . . , xm, 0, 0, 0, . . .)

and π1((xn)n≥1) = x1.
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We consider the RIFS S = (X, (f0, f1)) where f0 : X× X → X and f1 :
X× X → X are given by

f0(x, y) = i1

(
π1(x)

2

)
+
j(y)
2
,

f1(x, y) = i1

(
π1(x)

2
+

1
2

)
+
j(y)
2
.

Then A(S) =
∞
×
k=0

[0, 1
2k ].

Proof. We put A =
∞
×
k=0

[0, 1
2k ]. Then j(A) = {0} ×

( ∞
×
k=0

[
0, 1

2k

])
and

π1(A) = [0, 1].
We also have

f0(A,A) = i1

(
π1(A)

2

)
+
j(A)

2
=

= [0, 1
2 ]× {(0, 0, 0, . . .)}+ {0} ×

( ∞
×
k=0

[
0,

1
2k+1

])
= [0, 1

2 ]×
( ∞
×
k=0

[
0, 1

2k+1

])
and

f1(A,A) = i1

(
π1(A)

2
+

1
2

)
+
j(A)

2
=

=
[

1
2 , 1

]
× {(0, 0, 0, . . .)}+ {0} ×

( ∞
×
k=0

[
0,

1
2k+1

])
=

[
1
2 , 1

]
×

( ∞
×
k=0

[0,
1

2k+1
]
)
.

Then A = f0(A,A) ∪ f1(A,A).

This proves that A(S) = A =
∞
×
k=0

[0, 1
2k ].

We remark that A(S) is connected and that

Af (S) ∩Ag(S) = f(A(S), A(S)) ∩ g(A(S), A(S)) = {1/2} ×
( ∞
×
k=0

[
0,

1
2k+1

])
.

It follows that the family of sets {Af (S), Ag(S)} is connected.

Example 4.5 (a Sierpinsky like RIFS). Let X = R2 and f, g, h : R2×R2 →
R2 be defined by f((x1, x2), (y1, y2)) = (x1

4 + y1
4 ,

x2
4 + y2

4 ), g((x1, x2), (y1, y2)) =
(x1

2 + 1
2 ,

x2
2 ) and h((x1, x2), (y1, y2)) = (x1

2 ,
x2
2 + 1

2). Let S = (R2, (f, g, h)) be
an RIFS. Let FS : K(R)×K(R) →K(R) be defined by FS(K,H) = f(K,H)∪
g(K,H) ∪ h(K,H). Let A(S) be such that A(S) = FS(A(S), A(S)).

Let us denote T = {(x1, x2) ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1},
T1 = {(x1, x2) ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1/2}, T2 = {(x1, x2) ∈
R2 | x1 ≥ 1/2, x2 ≥ 0, x1 + x2 ≤ 1} and T3 = {(x1, x2) ∈ R2 | x1 ≥ 0,
x2 ≥ 1/2, x1 + x2 ≤ 1}. Then T1 = f(T, T ), T2 = g(T, T ), T3 = h(T, T ) and
FS(T, T ) ⊂ T . It follows that A(S) ⊂ T and f(A(S), A(S)) ⊂ f(T, T ) = T1.
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We give now a direct proof that A(S) is connected.
Let f, g, h : R2→ R2 be defined by f(x1, x2) = (x1

2 ,
x2
2 ), g(x1, x2) = (x1

2 +
1
2 ,

x2
2 ) and h(x1, x2)=(x1

2 ,
x2
2 +1

2). We remark that g(x1, x2)=g((x1, x2), (y1, y2))
and h(x1, x2) = h((x1, x2), (y1, y2)), for every (x1, x2), (y1, y2) ∈ R2. Also,
f(x1, x2) = f((x1, x2), (x1, x2)). So, f(A(S)) ⊂ f(A(S), A(S)) ⊂ A(S). Let
T be the attractor of the IFS S1 = (R2, (f, g, h)). Then T is the Sierpinsky
triangle. It is well-known that T is a connected set. We have FS1(A(S)) =
f(A(S)) ∪ g(A(S)) ∪ h(A(S)) ⊂ A(S). This implies that T ⊂ A(S). We also
have f(T,T) = T1 = {(x1, x2) ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1/2}. It
follows that T1 = f(A(S), A(S)) ⊂ A(S).

Let G : K(R)→K(R) be defined by G(K) = FS1(K) ∪ T1. G is a con-
traction. We have G(A(S)) = A(S). Indeed,

G(A(S)) = FS1(A(S)) ∪ T1 ⊂ A(S) = FS(A(S), A(S)) =

= f(A(S), A(S)) ∪ g(A(S), A(S)) ∪ h(A(S), A(S)) =

= f(A(S), A(S)) ∪ g(A(S)) ∪ h(A(S)) ⊂ T1 ∪ g(A(S)) ∪ h(A(S)) = G(A(S)).

In fact, G is the set function associated to the IIFS S2 = (R2, (f, g, h,
(t(a,b))(a,b)∈T1

)). Let K0 = T and Kn+1 = G(Kn). Then K0 ⊂ K1 = T ∪ T1

and so Kn ⊂ Kn+1. It results that A(S2) = G(A(S2)) =
⋃
n≥0

Kn = A(S).

We remark that the sets Kn are connected. This can be proved by
induction with respect to n = 1, 2, . . .. K0 = T is a connected set. Let us
suppose that Kn is connected. Then Kn+1 = Kn ∪ f(Kn) ∪ g(Kn) ∪ h(Kn).
The sets Kn, f(Kn), g(Kn), h(Kn) are connected and Kn∩f(Kn) ⊃ T∩f(T) ⊃
{(0, 0)}, Kn ∩ g(Kn) ⊃ T ∩ g(T) ⊃ {(1, 0)} and Kn ∩ h(Kn) ⊃ T ∩ h(T) ⊃
{(0, 1)}. This proves that Kn+1 is connected. Since A(S) =

⋃
n≥0

Kn it follows

that A(S) is connected.
Next, A(S)f = f(A(S), A(S)) = T1, A(S)g = g(A(S), A(S)) = A(S) ∩

T2 and A(S)h = h(A(S), A(S)) = A(S) ∩ T3. A(S)f ∩ A(S)g = {(1/2, 0)},
A(S)f ∩A(S)h = {(0, 1/2)} and A(S)g ∩A(S)h = {(1/2, 1/2)}. It follows that
the family of sets {A(S)f , A(S)g, A(S)h} is connected.
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