ON THE CONNECTIVITY OF THE ATTRACTORS
OF RECURRENT ITERATED FUNCTION SYSTEMS
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The aim of the paper is to give necessary and sufficient conditions for the attractor
of a recurrent iterated function system to be arcwise connected. Recurrent iterated
function systems are a generalization of iterated function systems. Instead of
taking contractions from a metric space (X,d) to itself in the definition of an
iterated function system we take contractions from X x X to X.
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1. INTRODUCTION

Iterated function systems (IFSs) were conceived in the present form by
John Hutchinson [4] and popularized by Michael Barnsley [1] and are one of
the most common and most general ways to generate fractals. Many of the
important examples of sets and functions with special and unusual properties
in analysis turn out to be fractal sets or functions whose graph are a fractal
sets and a great part of them are attractors of IFSs. There is a current effort
to extend the classical Hutchinson’s framework to more general spaces and
infinite iterated function systems (IIFSs) or more generally to multifunction
systems and to study them. A recent such extension of the IFS theory can be
found in [7], where the Lipscomb’s space-which was an important example in
dimension theory — can be obtained as an attractor of an IIFS defined in a very
general setting. In this setting the attractor can be a closed and bounded set
in contrast with the classical theory where only compact sets are considered.
Although the fractal sets are defined with measure theory — being sets with
noninteger Hausdorff dimension [2], [3] — it turns out that they have interesting
topological properties as we can see from the above example [7]. One of the
most important result in this direction is given in Theorem 1.2 below (see [11]
for a proof) which states when the attractor of an IF'S is a connected set. We
intend to extend this result to recurrent iterated function system (see [8], [9];
see [5], [6] for a generalization of results from [8]).
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The paper is divided in four parts. The first part is the introduction.
In the second part is given the description of the shift space of a recurrent
iterated function system. The main result, Theorem 3.1, is contained in the
third part. The last part contains some examples.

We start by a short presentation of recurrent iterated function systems,
RIFS for short. We will also fix the notations.

Let (X, d) be a metric space and A C X. By 0(A) we understand the
diameter of A, i.e., 6(A) = sup d(z,y).

z,yeA

Let (X, d) be a metric space and K(X) be the set of nonvoid compact

subsets of X. K (X) with the distance Hausdorff-Pompeiu h : K(X)xK(X) —

[0, +00) defined by
h(A, B) = max(D(A, B), D(B, A)),

where

D(A, B) = supd(x, B) = sup ( inf d(x,y)).
x€A zeA \YEB
is a metric space.

(K(X),h) is a complete metric space provided that (X, d) is a complete
metric space, compact provided that (X, d) is compact and separable provided
that (X, d) is separable (see [1], [2] or [10]).

For a function f : X — X let us denote by Lip(f) € [0, 4+o00] the Lipschitz
constant associated to f,

: a(f (@), f(y))
Lip(f) = sup ———=~.
( ) z,yeX; x#y d({L’,y)
f is a Lipschitz function if Lip(f) < 400 and a contraction if Lip(f) < 1.
For a function f: X x X — X the number

. . d(f($,331),f(y, yl))
Lip(f)= 5% . max{d(@,y), d(@1,91))

TAyY or T1#Y]

is named the Lipschitz constant of f.

The function f : X x X — X is a Lipschitz function if Lip(f) < 400
and a contraction if Lip(f) < 1.

An iterated function systems on X consists of a finite family of contrac-
tions (fk),—15 on X and it is denoted by S = (X, (fi)—17)-

A recurrent iterated function systems on X consists of a finite family of
contractions (fg),—17, fr : X X X — X and is denoted by § = (X, (f¢)—17)-

For an IFS (respectively for a RIFS) Fs : K(X) — K(X) (respectively
Fs: K(X) x K(X) — K(X) for a RIFS) is the function defined by Fs(B) =
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U fr(B) (respectively by Fs(K,H) = | fx(K, H) for a RIFS, where for a
k=1 k=1

function f: X x X — X, f(K,H) = f(K x H) = {f(z,y) | v € K, y € H}).
The function Fs is in both cases a contraction with

Lip(Fs) < max Lip(fi).

=1,n

We remark that every IFS is a particular case of a RIF'S.

Using the Banach contraction theorem there exists, for an IFS or a RIF'S,
a unique set A(S) such that Fs(A(S)) = A(S), respectively Fs(A(S), A(S)) =
A(S). We state the results for RIFS (see [8], [9] or [5], [6] for a general case).

THEOREM 1.1. Let (X,d) be a complete metric space and & = (X,
(f&)pe1s) be a RIFS with ¢ = max Lip(fz) < 1. Then there exists a
’ k=T,n

unique set A(S) € K(X) such that Fs(A(S), A(S)) = A(S). Moreover, for
any Ho, Hy € K(X) the sequence (Hp)n>1 defined by Hypy1 = Fs(Hy, Hyp—1)
is convergent to A(S). For the speed of the convergence we have the following
estimation

h(Hy, A(S)) < icm

max {h(Ho, H),h(H1, Hs)}.

— C

Definition 1.1. Let (X, d) be a metric space and (A;);er a family of non-
void subsets of X. The family (4;);csr is said to be connected if for every
i,j € I there exists (zk)k:ﬁ C I such that iy =i, i, = j and A;, N A, #0
for every k € {1,2,...,n—1}.

Definition 1.2. A metric space (X,d) is arcwise connected if for every
x,y € X there exists a continuous function ¢ : [0,1] — X such that ¢(0) =z

and ¢(1) = y.

Concerning the connectivity of the attractor of an IFS we have the fol-
lowing theorem (see [11]).

THEOREM 1.2. Let (X, d) be a complete metric space, S = (X, (fk)p=17)
be an IFS with ¢ = max Lip(fx) < 1 and A(S) be the attractor of S. The
k=1,n
following three statements are equivalent:

(1) the family (A;);—15 is connected, where A; = f;(A(S));
(2) A(S) is arcwise connected;

(3) A(S) is connected.

We want to prove a similar result for a RIFS.
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2. THE SHIFT SPACE FOR A RIFS

In this section we describe the construction of the shift space of a RIFS
and we present the main properties concerning the relation between the at-
tractor of a RIFS and the shift space. The shift space for a RIFS will be used
in the proof of Theorem 3.1. The proofs can be found in [9].

Through this section (X,d) will be a fixed complete metric space and
S = (X, (fk)k:ﬁ) a fixed RIFS with n functions.

We will start with some notations: k, I, m, ¢, j, m/, i; denote natural
numbers, if we do not say otherwise, N denotes the set of natural number,
N* = N\{0} and N}, = {1,2,...,n}.

For a nonvoid set I and a family of functions f; : X; — Y; where ¢ € I,

X fi denotes the function x f; : x X; — x Y; defined by X fi((zi)ier) =
icl icl icl icl icl
(fi(@i))ier-

Let Qp = N:;Qk,l for kK € N*. On Qp we consider the discrete metric
1 ifz=y
0 ifz#y’

Let us fix a bijection ¢y between Q x Q) = Njﬂk’l X Njﬂk’l and Qg1 =
N*, given by ¢x(a,b) =n? '(a—1)+b.

Let p¥ : Qp x Qi — Qpand p& : Qp x Qp — Qp be defined by p¥(z,y) =
z and pj(z,y) =y.

Let ¢F : Q1 — Qpand ¥5 : Q1 — Q be defined by ¢¥(z) = p¥ o
(%)~ (2) and ¥5(x) = p§ o (d1) " (2).

More general we consider ¢y, : (QZ)QIH — ), the function defined by

d : Q. X Q — Ry given by di(z,y) = 1 — 04 where Jy = {

ok—l-1

¢lk=¢k—10(¢k—2><<Z5k—2)0"'0< X qﬁl) for 0 <1 < k.

In particular, ¢p_1)x = Pr—1-
Also, let 0y : Qp — Qp_1 X Q_1 be the inverse of ¢p_1 and O : Qp —
((2;)21H be the inverse of ¢;,. That is 0, = gzﬁl;ll and

ok—1-1 1 ok—1-2 1 . ) X

ok—l-1 ok—1-2
= < X 9[+1> o ( X 9l> O---O(ek_l ng_l)oek for k > 1> 0.

i=1 i=1

Set p‘? = p?’X : X2n — ){7 p??l(x17x27,..7$2n) = x] Where X is a
nonvoid set. In particular, if X = () set p}l’l = p}l’ﬂl. Then p?’l ()% — Q,

n,l
p; (@1, 32, ..., T2n) = ;.
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Set also 7" = pl Mol Qp — Qfor 0 <l<kandje{1,2,... 2"}

Remark 2.1. With the above notations we have
(1) Tf+1’k = Qb;?, where j € {1,2}.

2k—l
(2) < X le> 00k = O, where 0 < m <[ < k.
i=1

! X " fm,l . /
(3) piop = p?;:ﬂkil—l)’ where m/,m,l € N*, iy € {1,2,...,2™ },

ir € {1,2,...,2™} and X = ()"
(4) O o p;™ = qu’X ) ( X Gmk>, where 0 < &k < m, u € N* and

i=1

k)2mik. In particular if w = [ — m we obtain 60, opéfm’m = pifm’X o

om—k

Il X

(Q

Gmk>, where k < m <[ and X = (Q)
1
(5

X —
ol
(
) T]m,k o 7_il,m _ T]l-me—k(i—l)’ where k <m < L.

(6) Tf’l = wil o¢§:1 o--- qu/}z]'ck,l’ where k <[, i1,12,...,tk_ € {1,2} and
J=i1 4 (ig = 124+ (ig—y — )21

Definition 2.1. The space (€, dgq), where Q = X Qf, and dg is the dis-

k>1
B
. 1-607 .
tance dq : Q2 x Q — Ry given by do(a, 5) = > % = > —3&* is named
E>1 E>1
the shift space or the code space for a RIFS with n components. An element
w € Q will be written as an infinite word w = wiws...WMWm+1 ... Where

Wi € Q. In other words, Q = {f : N*— N* | such that f(k) <n? '},
We remark that the convergence in (€2, dg) is in fact the convergence on
components.

LEMMA 2.1. (Q,dq) is a compact metric space.

Definition 2.2. Let Fy, : Q x Q@ — Q be defined by Fi(a,3) = w =
ko1(aq, fr)p2(az, B2) - .. dm(m, Bm) - .. that is wy = k and wy, = dm—1(0m—1,
Bm-1) for k € {1,2,...,n}.

Definition 2.3. (1) Let Ry : Q — Q be the function defined by R;(w) =
1 (w2)Yi(ws) - YT (Wimt1) - - that is (Ri(w))n = U7 (wnt1)-

(2) Let Ry : Q — Q be defined by Ra(w) = 13 (wa)13(w3) - . . 5 (wimt1) - - -
that is (R2(w))n = Y5 (wn+1)-

(3) Let R:Q — Q x Q be defined by R(«) = (R1(«), Ra(a)).

Remark 2.2. R is a continuous function.
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LEMMA 2.2. The functions Fy : Q2 x Q — Q defined as above are con-
n
tractions with Lipschitz constant less than 2/3 and Q = |J Fx(Q,Q). In other

k=1
words, € is the attractor of the RIFS (, (Fg),—17)-

Let [Q),, = lEle = {f : N;, — N* | such that f(k) < anil}. The

elements of [Q],, wﬁl be represented by words of length m, w = wiws ... wn,

where wy, € Q. Q* = |J [Q]m is the set of all finite words. For w € QF, |w]|
m>1

denotes the length of w. If w € Q then |w| = +o0.

As above, if w = wiws . . . WpWm+1 - - - then (W], = wiws . .. wy, and (W], €
[Qm. For @ € Q* and § € Q* or § € Q we denote o < (3 if |a] < |B| and
[ﬂha‘ = .

The functions Fy, for k € {1,2,...,n}, and R, Ry, Ry as above can be
defined in a similar way on finite words on which they have similar properties.

2
Let w € [Q],,. We are going to define the function f,, : X X — X and its
k=1

m

extension f, : x P(X)— P(X). We will use the same notations for f, and

2m
for its extension. Since f,, is a continuous function, one has fw< x K(X )) -
k=1

K (X) and so we can consider f,, : kil K(X)— K(X).

The construction will be made by induction with respect to the length
of the word w.

For w = wiwows ... € ) we have:

Sy = fur, where f,, : XXX — X is the wy function from the definitions
of the RIFS & = (X, (fx)p=17);

Jlw)z = furw, 1s the function fi,, : X x X x X x X — X given by

w2
S @1, 22,23, 24) = flu], (fp1 () (@1, 22), fyd () (T3, 24)) =
= Jlon (F2 0y (@1, 22), 120, (23, 24))
In general,
Jiwlm (T1, T2, ..., 22m) =
= floh (FRL(w]m) (T1, T2, -+« Tam—1), Ry (] ) (T2m—1415 Tam—149, - . ., Tam)).

Let (X, d) be a complete metric space and § = (X, (f¢);—15) be a RIFS.
Let H, H, C X be sets. Then

f[w}m(Hl,HQ,...,HQm) = f[w]m(Hl X Hy x ++- % Hgm) —
= {fiw)m (x1, 272, ..., m2m) | 1) € Hp}
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and

Notation 2.1. Let (X,d) be a complete metric space, m € N* and let

f: %X X — X be a contraction. We denote by e the fixed point of f. If
k=1
f = fo then we denote by ey, or by e, the fixed point of f = f,.
The main properties of the shift space and its relation with the attractor
of a RIFS is contained in the following theorem.

THEOREM 2.1. If A=A(S) is the attractor of the RIFS S= (X, (fx)17)
then:

(1) For w € Q, one has Ay, ., C Ay, In other words, if o € Q* and
B € Q* such that o < Bthen Ag C A,.

(2) 6(AL),,) — 0 when m — oo, more precisely §(Ay,,,) < c"6(A).

(3) For every w € Q) there exists a unique a,, such that {a,} = [ Ap),,.-

m>1
(4) We have A = | fu(4,4) = U Au, 4o = U  Awa for
weQy weQy QEQ|y 41
weM A= U fu(4A4,...,4) = U A, and A, = U Ag.
we[Qm we[Qm BE w|4nw=B

(5) For w € Q, ey),, € A, C A and if a, is defined by {a,} =

N A[w]m, then d(e[w]m,aw) — 0 when m — oo.
m>1

(6) A= U {au} and the set {ey,, |w € Q and m € N*} is dense in
weN
A. Similarly, Ao = U {aw} for every o € Q and the set {ey,),, |w € Q,
weN,a<w

a <w and m € N*} is dense in A,.

(7) The function © : Q — A defined by w(w) = ay is continuous and
surjective.
for every o, B € Q and k € {1,2,...,n}.

3. THE MAIN RESULT

For the proof of the main result (Theorem 3.1) we need the following
lemma.

LEMMA 3.1. Let(X,d) be a complete metric space and (an)n>1 be a se-
quence of positive numbers convergent to 0. Let (A;);>0 be a sequence of divi-
sions of the unit interval [0,1] (i.e., Ay = (yh =0< 9yl <+ < yf” =1)) such

that A C Aj4q, lliin |A|| =0, where || A]] = Iﬁélx (yt—yl 1) Let (g1)1>0 be
— 400 =
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a sequence of functions g; : A — X such that gi41]a, = g1 and for every m >
n and every y* € Ap, max{d(gm(¥;"), g (y})), d(gm(¥i"): 9n(¥711))} < an
whenever y;" € [y7,y71]. Then there exists a continuous function g : [0,1] —
X such that gla, = qi.

Proof. Let A = |JA, and § : A — X be the function defined by

n>1
g(xz) = gi(z) if x € A;. The function § is well defined because gm|a, = g; for
every m > [. We intend to prove that ¢ is uniformly continuous. Let ¢ > 0
be fixed. Since the sequence (ay),>1 is convergent to 0, there exists n. such

ny
that for every n > n. a, < e/2. Set §; = ml?(yi — yﬁ_l) and 0 = d,,_. We have
1=

0 <1 <6 < |4
Let ¢,d € [0,1] N A be such that ¢ < d and d — ¢ < §. There exists
mo > ne such that ¢,d € A,,,. The set (¢,d) N A,,_ has at most one element.
If (¢,d) N Ay, = 0, then there exists a j € {0,1,...,n,_— 1} such that
y?‘f <c<d< y?_jl In this case we have

d(g(c), g(d)) = d(gmy(c), gmo(d)) <
< d(Gmo (€)s gn. (Y°)) + d(gn. (Y7°): Gmo (d)) < 2a5, <e.

If (e,d) N Ap, = {y;°} we have yI°; <c<y;* <d<y]i and

d(g(c), §(d)) = d(gmo (€), gmo (d)) <
< d(Gimo(€), 9n. (Y5*)) + d(Gn. (Y;°)s Gmo (d)) < 2an, < e.

It follows that ¢ is an uniformly continuous function. Then there exists
a unique continuous function ¢ : [0,1] — X such that g|4 = g. We also have

gla, = g

THEOREM 3.1. Let (X, d) be a complete metric space, S = (X, (fk)kzﬁ)

be a RIFS, ¢ = max Lip(fx) < 1 and A = A(S) be the attractor of S. The
k=1n

following three statements are equivalent:
(1) The family (A;);,_15 is connected, where A; = fi(A(S), A(S));
(2) A(S) is arcwise connected;
(3) A(S) is connected.

Proof. Firstly we remark that, according to Theorem 1.1, we have A(S) €
K(X) and so A, = A(S)w = fu(A(S),A(S),..., A(S)) € K(X) for every
w € . We can suppose that §(A(S)) # 0. The case 6(A(S)) = 0 is obvious.
In this case the set A contains one point and A = A, for every w € Q*.

(2) = (3) is obvious, since every arcwise connected set is connected.

(3) = (1) Let M be {j € {1,2,...,n}| there exist (iy),_15,; such that

1,m
in=1,4m=jand 4;, NA # () for every k € {1,2,...,m — 1}}.

Tt1
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Set Vi = U A4jand Vo = [J A4j. Then ViNnVo =0, V1 UV, = A(S)
jEM Jj¢M
and V; and V5 are compact sets. Since A(S) is connected and V; # ) (because
Ay C V1) it follows that A(S) = V1.

(1) = (2) For every indexes ¢ and j such that A; NA; # 0 let us fix ; ; €
A;NA;. Also, for every indexes i and j let us fix (zk)k:m such that i1 = 1,
im(iy) = J and A; N A;, , # 0 for every k € {1,2,...,m(i,j) —1}. The family
of indexes (zk)k:m can be taken without repetition. Then m(i,j) < n.
We can suppose that m(i,j) = n (by taking A;, =--- = Ao = Aim(i,j))'

Since A(S) = U fi(A(S), A(S)), it follows that for every z there exists
=1

i—
i(z) such that z € A,y = fi)(A(S), A(S)). Leti: A — {1,2,...,n} be a
fixed function such that z € i(2).

Then, for every two elements 29 and 21, we have fixed 4;(;) and A;(;,), a
family of indexes (ix);_1 such that i1 = i(20), in = i(21) and A;, N A;,, # 0
for every k € {1,2,...,n — 1} and elements x;, ;, ., € A; N A;_, for k €
{1,2,...,n —1}. Set wo(z0,21) = 20, wn(z0,21) = 21, ix(20, 21) = i} for every
ke {1,2,...,n} and wi (20, 21) = T4y 5, for every k € {1,2,...,n —1}. We
remark that wy (20, 21), wry1(20, 21) € Ay (2,2, for every k € {0,1,...,n—1}.

Let zp and x; be two fixed different elements from A(S) . We will define
by induction after I A; = (yh =0 <y} <--- < yiLl = 1), divisions of the unit
interval [0, 1], the functions g; : A; — A(S) and the elements w!. € [Q];, where
k€{0,1,...,n' —1} such that A; C Air1, giv1la, = g, gl(yfc),gl(yi:H) € Awi
for k € {0,1,...,n' =1} and if I’ > [ and y}, € [Yhs Yk 4] then w < wh,.

Set Ag = (y) =0 <3? =1), go(0) = 20 and go(1) = 21.

Set A = (y(l) =0< y% < e < y}l = 1), where y,i = %, and g1(y,i) =
w(xo, z1) for k € {0,1,...,n}.

In general we will take yﬁc = % Then yfg = y?{ll and A; C Apy.

Let us suppose that g; and w,lf for k € {0,1,...,n! — 1} are defined.
Let k € {0,1,...,n' — 1} be fixed. Then g;(y}), q:(vh 1) € A Tt follows

that g(y.) = fwgc(217227~~7221) and g(yh_ ) = f%(zi,zé,...,z;l) for some
21,225+ Zol, 21529, 2 € A(S). Set
ng(y,l;Lij):fwi (wj(z1, 21), wj (22, 2), ., wj(ZQl,z;l)) for j€{0,1,...,n}.
We have
gi1(yitt) = fwgc(wo(zl,Z'l),wo(Zmzé), o wo(zg, 2y ) =

= wa(Zl,ZQ, .. .,2’21) = yfc
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and
gl“rl(yi;—;}‘,-n) = f"-’fc (wn(zlﬂ 2/1)7 wn(227 Zé)? B wn(z2lvzél)) =
= fwé(zi,zé, .. .,zél) = yfﬁl.

This means that g,y is well defined and g;41|a, = g1-
Let j € {0,1,...,n} be fix. Then w;(z;, %), w;+1(%,%,) € Aij(%zg) for

every i € {1,2,...,2'}. Let Wit = w,i¢1l(ij(21,zi),ij(zg,zé), . ,ij(zy,z;l)).

kn+j
Then

/
(2

g1 (Y ;) = for (wj(21,21),wj (22, 29), - - wj(zgr, 21)) €
€ St (A (e1.20)s A (e - Aiy(ay.2)) =
=A

wé(ﬁll (lj (Zl vzi)ﬂj (227Zé)7---72j (z2l 7Z;l )) Wﬁj,,;ij

and
I+1
9141 W j11) = fw;c(wjﬂ(zlyZﬂ),wj+1(22,zé), o wis (291, 2m)) €
€ wa (Aij(zhz’l)) Aij(ZQ,Zé)? s 7Aij(z21 7Z;l)) =
=A 11

wi b1 (i (21,21) 5 (22,25) o115 (251,20 )) Wit

We also have that wfg <w,l:7§ij. This implies that if I’ > [ then wf k) <w,l€,.
W=l

The induction hypothesis are now cheeked.
Since, for every [ and k € {1,2,...,n'}, gl(yfc),gl(yfcﬂ) IS Awi and w! €

[, we have d(gi(y},), 01(¥h11)) < 0(A,y) < 6(A).
We will apply Lemma 3.1 to the functions g; and divisions 4A; defined
above. We have seen that A; C Ay and giy1]|a, = ¢;. Since [|[A]] = #,

llim |Ar]] = 0. Set a; = ¢!§(A). Let I’ > and yk, € Ay be fix. We have two
——400

-1

cases, yb, € A and yh, ¢ A;.
In the first case, yk, € Ay, k' = [nl]‘;’:l]n
Then g;(y}) = gl(yg,),gl(yéjﬂ) € A, ,where wl € [Q);, and so

d(gu(¥h)s 91(Whs1)) = dgu(yh)s 1 (Whr1) < 8(Ay ) < d6(A) = ar.
Also, we have
d(gi(vh), 91 (Wh-1)) = d(gu(h), @1 (Wh—1)) < 8(Au) < d6(A) = a.

In the second case we have yg, € (yi,yé.ﬂ), where k = [nﬁ/_l] Then

k' ]

and y,Z, =y}, where k = [W

yfc,yfcﬂ € Awi’ wa =< wg, and yg, € Awf;/ C Awé. It follows that

max{d(gr (yir), 91(9k)s g Wi ), 01 (Whs1))} < 5(A1) < d6(A) = a.
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In view of Lemma 3.1, there exists a continuous function g : [0,1] — X
such that g|a, = ¢;. Since g(4A;) = gi(A;) C A, g is a continuous function and
A is a compact set we have, ¢g([0,1]) C A. This proves that A is arcwise con-
nected.

4. EXAMPLES

Ezample 4.1. Every IFS can be seen as a RIFS. Indeed, let S = (X
(fk)r=17) be an IFS. Let S = (X, (ﬁ)k:ﬁ) be the RIFS defined by fi(z,y) =
fx(x). Then A(S) = A(S). In this way Theorem 1.1 is a particular case of
Theorem 3.1.

Ezample 4.2. Let X =Randg, f: RxR — Rbedefined by f(z,y) =
Yand g(z,y) = £+2. Let S = (R, (f,g)) be an RIFS. Let F : K(R)x K(R) —
( ) be defined by F(K,H) = (K H)Ug(K, H). The attractor of S is [0,
[0.2/3]'C [0,1] and g([0,1],0.1)) = [2/3,1] C |

zy

J:
71]

Indeed f([0,1],]0,1]) =
and so F'([0,1],]0,1]) = [0, 1]. It follows that A(S) = [0, 1].

We remark that A(S) is connected. We also remark that the family of
sets {Af(S) = f([0,1],[0,1]) = [0,2/3], 44(S) = g([0,1],[0,1]) = [2/3,1]} is

connected.

Ezample 4.3. Let X =R and g, f : R x R — R be defined by f(z,y) =
£+ Y and g(z,y) = £+ L+ 2 Let S = (R,(f,9)) be a RIFS. Let F :
K(R)x K (R) —K(R) be defined by F(K,H) = f(K,H) U g(K, H). The at-
tractor of S is [0,2/5] U [3/5, 1]. Indeed

£([0,2/5]U[3/5,1],[0,2/5] U [3/5,1]) = f([0,2/5], [0, 2/5]) U £([0,2/5],[3/5, 1])U
Uf([3/5,1],[3/5,1]) = [0,4/25] U [3/25,7/25] U [6/25,2/5] = [0,2/5].

In a similar way, ¢([0,2/5] U[3/5,1],[0,2/5] U [3/5,1]) = [3/5,1].
We remark that A(S) = [0,2/5]U3/5,1] is not connected. Moreover, the
family of sets {A¢(S) = [0,2/5], Ay(S) = [3/5,1]} is not connected.

Ezample 4.4. Let X be one of the spaces [, or co where p > 1. The
elements of these spaces will be sequences of real numbers (2, )n,>1.
Let j: X =X, 4, : R™— X and 7 : X — R be given by

J@y ey Ty ) = (0,20, Tgy ooy Xy )y

im(z1, 22, ..., Tm) = (21,22, ...,%m,0,0,0,...)

and m ((zn)n>1) = 1.
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We consider the RIFS S = (X, (fo, f1)) where fy : X x X — X and f; :
X x X — X are given by

folw.y) = i (Wlw) W)

2 2
filz.y) C§@+;>+%?
ThmlA@S):kE;m,;]
Proof. We put A = IEO[O, L]. Then j(A) = {0} x (EO [0, 2%]) and

mi(A) =[0,1].
We also have

=10,3] x {(0,0,0,...)} + {0} x

= [3,1] x{(0,0,0,..)} + {0} x

Then A = fo(A, A) U f1(A, A).

This proves that A(S) = A = X [O, 21k]
k=

We remark that A(S) is connected and that
A7(S) 1 4y(8) = FA(S), AS) Ng(A(S), A®) = {1/2} x (X [0, 57]).

7 ok+1
It follows that the family of sets {Af(S), A4(S)} is connected.

Ezample 4.5 (a Sierpinsky like RIFS). Let X = R%? and f,g,h : R2xR? —
R? be defined by f((z1,22), (y1,92)) = (F+ 4, 2 +%), 9((%952% (y1,92)) =
(5 + 1, 2) and h((z1,22), (31, 92)) = (8, % + 1). Let S = (R, (f,g, h)) be
an RIFS. Let Fs : K (R)x K(R) —K(R) be defined by Fs(K,H) = f(K,H)U
g(K,H)Uh(K,H). Let A(S) be such that A(S) = Fs(A(S), A(S)).

Let us denote T = {(z1,72) € R? | a1 0, z2 > 0, 1 + 22 < 1},
Ty = {(z1,22) € R?2 | 21 >0, 13 > 0, 21 + 22 < 1/2}, Ty = {(z1,72) €
R? | 21 > 1/2, 29 > 0, 21 + 29 < 1} and T3 = {(21,22) € R? | 21 > 0,
w9 > 1/2, 11 + a3 < 1}. Then Ty = £(T,T), Ty
Fs(T,T) C T. It follows that A(S) C T and f(A

l\’)\»—t

)
>

g(T,T), T3 = h(T,T) and
S),

AS), AS)) € F(I.T) = .
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We give now a direct proof that A(S) is connected.

Let f,g,h : R?— R? be defined by f(21,22) = (&, 22), g(21,22) = (4 +
%, %) and h(zy, 22) = (%, 5+ ) We remark that g(z1, x2) =g((x1, x2), (y1,v2))
and h(z1,22) = h((z1,22), (y17y2)> for every (z1,22), (y1,52) € R* Also,

f(z1,32) = f((21,22), (1, 22)). So, f( (8)) C f(A(S), A(S)) € A(S). Let

T be the attractor of the IFS S; = (R2,(f,g,h)). Then T is the Sierpinsky
triangle. It is well-known that T is a connected set. We have Fs, (A(S)) =
F(A(S)) UG(A(S)) UR(A(S)) € A(S). This implies that T C A(S). We also
have f(T,T) =T = {(1‘1,332) € R? | r1 >0, 29 2 0, x1 + 29 < 1/2} It
follows that T7 = f(A(S), A(S)) C A(S).

Let G : K(R)—K(R) be defined by G(K) = Fs,(K)UT;. G is a con-
traction. We have G(A(S)) = A(S). Indeed,

G(A(S)) = Fs, (A(S)) UT1 C A(S) = F5(A(S), A(S)) =
= J(A(S), A(S)) Ug(A(S), A(S)) Uh(A(S), A(S)) =
= f(A(S), A(8)) UG(A(8)) UR(A(S)) € T1 UG(A(S)) UR(A(S)) =G

/-\
/-\
%)
S~—

).

In fact, G is the set function associated to the IIFS Sy = (R?,(f, g, h,
(t(a,b))(a,b)eTl))- Let Ko =T and K41 = G(Kn) Then Ko Cc K1 =TUTy
and so K, C K,41. It results that A(S2) = G(A(S2)) = U K, = A(S).

n>0

We remark that the sets K, are connected. This can be proved by
induction with respect to n = 1,2,.... Ko = T is a connected set. Let us
suppose that K, is connected. Then Kn+1 K, U f(K,) Ug(K,) Uh(K,).
The sets K, f(K,),§(Ky), h(K,) are connected and K, N f(K. ) D ’]I‘ﬂf( ) D
{(0,0)}, K, Ng(K,) D TNg(T) > {(1,0)} and K, Nh(K,) D TNA(T) D
{(0,1)}. This proves that K, is connected. Since A(S) = it follows

that A(S) is connected.

Next, A(S)y = [(A(S), A(S)) = Ti, A(S), = g(A(S), A(S)) = A(S) "
T, and A(S) = h(A(S), A(S)) = A(S) N Ts. A(S); 0 A(S), = {(1/2,0)},
A(S);NA(S), = {(0,1/2)} and A(S),NA(S), = {(1/2,1/2)}. Tt follows that
the family of sets {A(S) s, A(S)g, A(S)n} is connected.
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