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We consider the optimal selection problem of the rebalancing portfolio with chance
constraints, where some of the parameters are uncertain. We model these un-
certainties using fuzzy numbers. The random variable of the chance constraints
follows fuzzy linear exponential distribution.
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1. INTRODUCTION

The selection problem of the rebalancing portfolio, under nonconvex
transactional costs, was defined in Konno et al. [7], [8], which proposed a
branch and bound algorithm for calculating an optimal solution of the mini-
mum cost rebalancing problem under concave transactional costs.

In order to purchase (invest) and/or sell (disinvest) assets, sometimes
the investor has to pay certain fees.

In this paper, the fees associated with x = (x1, x2, . . . , xn) are named
transaction cost, where xj represents the amount of investment (or disinvest-
ment) of the asset j (j = 1, . . . , n). The transaction cost of the entire invest-
ment is

∑n
j=1 cj(xj), where cj(xj) is a non-decreasing nonconvex function up

to certain point xj [7].
Let us now consider a time horizon, composed from T moments of time;

we denote by (r1t, r2t, . . . , rnt) the vector of the rates of return of the n assets at
the t moment, and pt = Pr{(R1, R2, . . . , Rn) = (r1t, r2t, . . . , rnt)}, t = 1, . . . , T
is known and where Rj is a random variable, which represents the rate of the
return of the j asset (Pr stands for probability) ([5], [13], [14]).

Let rj =
∑T

t=1 ptrjt be the expected rate of the return of the asset j
without transaction costs, and

∑n
j=1 rjxj the expected rate of the return of

the portfolio x = (x1, x2, . . . , xn).
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Because the current portfolio may deviate from the present efficient fron-
tier, the investors are inclined to “rebalance” the portfolio due to the change
of investment environment.

Let x0 = (x0
1, x

0
2, . . . , x

0
n) [7], [8] be the portfolio at time 0. The investor

wants to change the portfolio at a certain later point, say one year later. Let
x = (x1, x2, . . . , xn) the new portfolio, with the condition that its expected rate
of return

∑n
j=1 rjxj is greater than a constant g2 and smaller than a constant

g1, because the investor wants to obtain an minimum guaranteed expected
rate of return, and also a maximum expected rate of return, if it is possible.

Let W [r(x)] = pt

∣∣ ∑n
j=1(rjt − rj)xj

∣∣ be the risk of the problem, assumed
to be bounded, which means that the investor does not want a very big risk
W0, but neither a small risk w0, which gives a less expected rate of return.

The investor is limited at a minimum M2 (maximum M1) capital which
he wishes to invest in the rebalancing problem.

Let us introduce the new portfolio at a certain later point x = y +
x0, with x0 = (x0

1, x
0
2, . . . , x

0
n) being the portfolio at time point 0, made up

by all the operations resulted from the rebalancing, a portfolio that has the
following meanings:

– if yj > 0, j = 1, . . . , n, then cj(yj) is the associated cost with purchasing
yj units of the asset j;

– if yj < 0, j = 1, . . . , n, then cj(yj) is the associated cost with selling
|yj | units of the asset j.

In this paper, we model the chance constraints from the minimal cost
rebalancing problem using fuzzy theory approach. Then, we solve the deter-
ministic equivalent of the fuzzy chance constrained minimal cost rebalancing
problem.

This paper is organized as follows. In Section 2, we review the theore-
tical background concerning the triangular fuzzy numbers. In Section 3, we
state the minimum cost rebalancing problem under the mean-absolute devia-
tion (MAD) model. In Section 4, we model the programming problem under
fuzzy linear exponential distribution with different choices of the distribution
parameters. In the last section, we solve the deterministic problem with modi-
fied subgradient algorithm.

2. FUZZY NUMBERS THEORY. SOME PRELIMINARIES

The purpose of this section is to recall some concepts which will be
needed in the sequel. The programming problem with chance constraints has
some uncertain informations which can be modeled through different methods
involving randomness and fuzziness in different scenarios. Buckley [1], [2], [3]
has defined fuzzy probability using fuzzy numbers as parameters in probability
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density function. The fuzzy numbers are obtained from the set of confidence
interval.

According to Dash et al. [4], the fuzzy chance constrained programming
problem is a chance constrained programming problem in the presence of am-
biguous information, where the random variable follows different fuzzy distri-
butions. In this paper, fuzzy random variables for chance constrained rebal-
ancing problem follow a linear exponential distribution, which is very efficient
from the practical point of view.

We place a “ ˜ ” over a symbol to denote a fuzzy set. All our fuzzy
sets will be fuzzy subsets of the real numbers. So, ãi, Ã, x̃ all represent fuzzy
subsets of the real numbers.

Given the fuzzy number F̃ with membership function µ
F̃

: R → [0, 1],
the set {b | µF̃ (b) ≥ α, ∀ 0 ≤ α ≤ 1} = F̃ [α] is α-cut of F̃ . F̃ [0] is sepa-
rately defined as the closure of the union of all the F̃ [α], 0 < α ≤ 1. So, a
fuzzy number F̃ is a fuzzy subset of the real numbers satisfying the following
conditions:

– µF̃ (b) = 1 for some b (normalized);
– F̃ [α] is a closed and bounded interval for 0 ≤ α ≤ 1.
A triangular fuzzy number F̃ is a triplet (y1, y2, y3) ∈ R3. The member-

ship function of F̃ is defined in connection with the real numbers y1, y2, y3 as
follows:

F̃ (x) =


0 x ∈ (−∞, y1),
x−y1

y2−y1 x ∈ [y1, y2],
x−y3

y2−y3 x ∈ (y2, y3],

0 x ∈ (y3,∞).

F̃ (x) represents a number in [0,1], which is the membership function
of F̃ evaluated in x. For any fuzzy number F̃ , the α-cut of F̃ is a closed
and bounded interval for 0 ≤ α ≤ 1, i.e., F̃ ([α]) = [q∗(α), q∗(α)]. We define
a partial order relation � between two fuzzy numbers F̃1 and F̃2 using α-
cuts F̃1[α] and F̃2[α]. Let F̃1[α] =

[
q1
∗(α), q1∗(α)

]
and F̃2[α] =

[
q2
∗(α), q2∗(α)

]
.

Then, F̃1 � F̃2 iff q1
∗(α) ≥ q2∗(α), for each α ∈ [0, 1].

3. PROBLEM STATEMENT

We assume that for the expected rate of return to have chance constraints
with the probabilities p′t = Pr{(R1, R2, . . . , Rn) = (r′1t, r

′
2t, . . . , r

′
nt)}, t =

1, . . . , T and p′′t = Pr{(R1, R2, . . . , Rn) = (r′′1t, r
′′
2t, . . . , r

′′
nt)}, t = 1, . . . , T

are known. The minimum cost rebalancing problem under the mean-absolute
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deviation (MAD) model can be formulated as follows

min
n∑

j=1

cj(yj)(P )

subject to

Pr

( n∑
j=1

rj(yj + x0
j ) ≤ g1 ≤

n∑
j=1

r′j(yj + x0
j )

)
≥ q1,

P r

( n∑
j=1

r′′j (yj + x0
j ) ≤ g2 ≤

n∑
j=1

rj(yj + x0
j )

)
≥ q2,

M2 ≤
n∑

j=1

(yj + x0
j ) ≤ M1,

γ′j ≤ yj + x0
j ≤ γj , j = 1, n,

w0 ≤
T∑

t=1

pt

∣∣∣∣ n∑
j=1

(rjt − rj)yj + (rjt − rj)x0
j

∣∣∣∣ ≤ W0.

Let us consider a set of nonnegative variables zt, z′t, t = 1, . . . , T , satis-
fying the following conditions

zt − z′t = pt

n∑
j=1

[
(rjt − rj)yj + (rjt − rj)x0

j

]
,

ztz
′
t = 0, zt ≥ 0, z′t ≥ 0, t = 1, . . . , T.

Then we have

zt + z′t =
∣∣∣∣pt

n∑
j=1

[
(rjt − rj)yj + (rjt − rj)x0

j

]∣∣∣∣, t = 1, . . . , T.

Therefore, instead of Problem (P ) we consider the following problem

min
n∑

j=1

cj(yj)(P1)

subject to

Pr

( n∑
j=1

rj(yj + x0
j ) ≤ g1 ≤

n∑
j=1

r′j(yj + x0
j )

)
≥ q1,

P r

( n∑
j=1

r′′j (yj + x0
j ) ≤ g2 ≤

n∑
j=1

rj(yj + x0
j )

)
≥ q2,
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M2 ≤
n∑

j=1

(yj + x0
j ) ≤ M1,

γ′j ≤ yj + x0
j ≤ γj , j = 1, . . . , n,

w0 ≤
T∑

t=1

(zt + z′t) ≤ W0,

zt − z′t = pt

n∑
j=1

[
(rjt − rj)yj + (rjt − rj)x0

j

]
,

ztz
′
t = 0, zt ≥ 0, z′t ≥ 0, t = 1, . . . , T.

As in [7] we can prove a similar result for problem (P1).

Theorem 1. The complementarity constraint ztz
′
t =0, zt≥0, z′t≥0, t=

1, 2, . . . , T , can be eliminated from problem (P1). Moreover,
∑T

t=1(zt−z′t) = 0.

Proof. Let (y∗1, . . . , y
∗
n, z∗1 , . . . , z

∗
T , z′∗1, . . . , z

′∗
T ) be an optimal solution of

the problem (P1) without complementarity constraint and let us assume that
z∗t z′∗t > 0, z∗t ≥ 0, z′∗t ≥ 0, ∀t ∈ I ⊂ {1, . . . , T}.

We see that
– if z∗t ≥ z′∗t ≥ 0, ∀t ∈ I then consider a solution of problem (P1)

(z̃t, z̃′t) = (z∗t − z′∗t , 0),∀t ∈ I;
– if 0 ≤ z∗t ≤ z′∗t , ∀t ∈ I then consider a solution of problem (P1)

(z̃t, z̃′t) = (0, z′∗t − z∗t ), ∀t ∈ I.
Therefore, (y∗1, . . . , y

∗
n, z̃1, . . . , z̃T , z̃′1, . . . , z̃′T ) satisfies all the constraint of (P1),

while the objective function value in (y∗1, . . . , y
∗
n, z̃1, . . . , z̃T , z̃′1, . . . , z̃′T ) is equal

with the objective function value calculated in (y∗1, . . . , y
∗
n, z∗1 , . . . , z

∗
T , z′∗1, . . . ,

z′∗T ). Moreover, it checks that

T∑
t=1

(
zt − z′t

)
=

T∑
t=1

pt

n∑
j=1

[
(rjt − rj)yj + (rjt − rj)x0

j

]
=

T∑
t=1

n∑
j=1

[
pt(rjt − rj)yj + pt(rjt − rj)x0

j

]
= 0.

The theorem is proved. �

Thus, the mean-absolute deviation (MAD) model from Marinescu [10],
can be represented as a crisp chance constrained programming problem for
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the minimal cost of the portfolio transaction of the form

min
n∑

j=1

cj(yj)(P2)

subject to

Pr

( n∑
j=1

rj(yj + x0
j ) ≤ g1 ≤

n∑
j=1

r′j(yj + x0
j )

)
≥ q1,

P r

( n∑
j=1

r′′j (yj + x0
j ) ≤ g2 ≤

n∑
j=1

rj(yj + x0
j )

)
≥ q2,

γ′j ≤ yj + x0
j ≤ γj , j = 1, . . . , n,

w0 ≤ 2
T∑

t=1

zt ≤ W0,

pt

n∑
j=1

(rjt − rj)yj − zt ≤ −pt

n∑
j=1

(rjt − rj)x0
j , t = 1, . . . , T,

where gi, i = 1, 2, is uncertain and
∑n

j=1 rj(yj + x0
j ) represents the expected

rate of return for rebalancing portfolio.
We suppose that g1 and g2 are fuzzy random variables and the others

real parameters M1, M2, γt, γ′t, W0, w0 are given. Their significations and
definitions are given in [9], [10], [11].

4. THE PROGRAMMING PROBLEM UNDER
FUZZY LINEAR EXPONENTIAL DISTRIBUTION

Let g1 and g2 be continuous random variables with probability density
function linear exponential

f(gi;λ, µ) =

{
e−λgi−

µg2
i

2 (λ + µgi) if gi > 0,
0 otherwise,

where λ and µ are uncertain parameters, describing the probability density
function. We will study both the case when the parameter λ is a fuzzy number
and the case when the parameter µ is a fuzzy number.

4.1. The parameter λ is a fuzzy number

Let g̃1 and g̃2 be fuzzy random variables with fuzzy density functions
linear exponential, λ̃ a fuzzy parameter and µ is given parameter. So, the
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fuzzy chance constrained programming problem for the minimal cost of the
portfolio transaction is of the form

min
n∑

j=1

cj(yj)(P3)

subject to

P̃ r

( n∑
j=1

rj(yj + x0
j ) ≤ g̃1 ≤

n∑
j=1

r′j(yj + x0
j )

)
� q̃1,

P̃ r

( n∑
j=1

r′′j (yj + x0
j )) ≤ g̃2 ≤

n∑
j=1

rj(yj + x0
j )

)
� q̃2,

M2 ≤
n∑

j=1

(yj + x0
j ) ≤ M1,

γ′j ≤ yj + x0
j ≤ γj , j = 1, . . . , n,

w0 ≤ 2
T∑

t=1

zt ≤ W0,

pt

n∑
j=1

(rjt − rj)yj − zt ≤ −pt

n∑
j=1

(rjt − rj)x0
j , t = 1, . . . , T.

Let u =
∑n

j=1 rj(yj + x0
j ), u′ =

∑n
j=1 r′j(yj + x0

j ) and u′′ =
∑n

j=1 r′′j (yj +
x0

j ). Then u ≤ g̃i ≤ u′ is a fuzzy event. P̃ r (u ≤ g̃i ≤ u′) is the probability of
this event which is a fuzzy number. Its α-cut is the set

P̃ r(u≤ g̃i≤u′)[α] =
{ ∫ u′

u
e−λgi−

µg2
i

2 (λ + µgi) dgi | λ∈ λ̃[α]
}

=
[
qi
∗(α), qi∗(α)

]
,

for 0 ≤ α ≤ 1. Denote q̃i[α]=
[
qi∗(α), q∗i (α)

]
, the α-cut of the fuzzy number q̃i.

Lemma 1. If g̃1 is a fuzzy random variable linear exponential distributed
with µ real parameter given, and λ̃1 is a fuzzy number, then the minimum
α-cut of the fuzzy probability of the event (u ≤ g̃1 ≤ u′) is

q1
∗(α) = min

{
e−λ1∗(α)u−µu2

2 − e−λ1∗(α)u′−µu′2
2 , e−λ∗1(α)u−µu2

2 − e−λ∗1(α)u′−µu′2
2

}
for α ∈ [0, 1], where λ̃1[α] = [λ1∗(α), λ∗1(α)].
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Proof.

P̃ r
(
u ≤ g̃1 ≤ u′

)
[α] =

{ ∫ u′

u
e−λ1g1−

µg2
1

2 (λ1 + µg1) dg1

∣∣∣λ1 ∈ λ̃1[α]
}

=

=
{

e−λ1u−µu2

2 − e−λ1u′−µu′2
2

∣∣∣λ̃1∗(α) ≤ λ1 ≤ λ̃∗1(α)
}

=
[
q1
∗(α), q1∗(α)

]
.

The function

f1(u, u′;λ1) = e−λ1u−µu2

2 − e−λ1u′−µu′2
2

is an increasing function of in λ1 until a maximum and it is decreasing at
infinite. So, it results that the minimum of the function f1 is attained in
λ1∗(α) for f1 increasing, or if f1 is decreasing then the minimum of f1 is
attained in λ∗1(α). Thus, the minimum α-cut of the fuzzy probability of the
event (u ≤ g̃1 ≤ u′) is

q1
∗(α)= min

{
e−λ1∗(α)u−µu2

2 −e−λ1∗(α)u′−µu′2
2 , e−λ∗1(α)u−µu2

2 −e−λ∗1(α)u′−µu′2
2

}
. �

Lemma 2. If g̃2 is a fuzzy random variable linear exponential distributed
with µ real parameter given, and λ̃2 is a fuzzy number, then we have the
following relation for the minimum α-cut of the fuzzy probability of the event
(u′′ ≤ g̃2 ≤ u) is

q2
∗(α) = min

{
e−λ2∗(α)u′′−µu′′2

2 −e−λ2∗(α)u−µu2

2 , e−λ∗2(α)u′′−µu′′2
2 −e−λ∗2(α)u−µu2

2

}
for α ∈ [0, 1], where λ̃2[α] = [λ2∗(α), λ∗2(α)].

Proof.

P̃ r
(
u′′ ≤ g̃2 ≤ u

)
[α] =

{ ∫ u

u′′
e−λ2g2−

µg2
2

2 (λ2 + µg2)dg2

∣∣∣λ2 ∈ λ̃2[α]
}

=

=
{

e−λ2u′′−µu′′2
2 − e−λ2u−µu2

2

∣∣∣λ̃2∗(α) ≤ λ2 ≤ λ̃∗2(α)
}

=
[
q2
∗(α), q2∗(α)

]
.

The function

f2(u′′, u;λ2) = e−λ2u′′−µu′′2
2 − e−λ2u−µu2

2

is increasing in λ2 until a maximum which is attained for

λ2max =
ln( u

u′′ )− µu2−u′′2

2

u− u′′
,

and after this point it is decreasing at infinite. It results that the minimum of
the function f2 is attained in λ2∗(α) if λ2 ≤ λ2max or in λ∗2(α) for λ2 > λ2max.
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So, the minimum α-cut of the fuzzy probability of the event (u′′ ≤ g̃2 ≤ u) is

q2
∗(α)= min

{
e−λ2∗(α)u′′−µu′′2

2 −e−λ2∗(α)u−µu2

2 , e−λ∗2(α)u′′−µu′′2
2 −e−λ∗2(α)u−µu2

2

}
. �

4.2. THE MODEL WITH µ - A FUZZY NUMBER
AND λ - REAL PARAMETER GIVEN

Let µ̃ be a fuzzy number. Also, let the variable X a fuzzy random variable
linear distributed with λ real parameter given, and denote it with X̃.

Lemma 3. If g̃1 is a fuzzy random variable linear exponential distributed
with λ real parameter given, and µ̃1 is a positive fuzzy number, then we have
the following relation for the minimum α-cut of the fuzzy probability of the
event (u ≤ g̃1 ≤ u′):

q1
∗(α) = min

{
e−λu−µ1∗(α)u2

2 − e−λu′−µ1∗(α)u′2
2 , e−λu−µ∗1(α)u2

2 − e−λu′−µ∗1(α)u′2

2

}
for α ∈ [0, 1], where µ̃1[α] = [µ1∗(α), µ∗1(α)].

Proof.

P̃ r
(
u ≤ g̃1 ≤ u′

)
[α] =

{ ∫ u′

u
e−λg1−

µ1g2
1

2 (λ + µ1g1)dg1

∣∣∣ µ1 ∈ µ̃1[α]
}

=

=
{

e−λu−µ1u2

2 − e−λu′−µ1u′2
2

∣∣∣ µ̃1∗(α) ≤ µ1 ≤ µ̃∗1(α)
}

=
[
q1
∗(α), q1∗(α)

]
.

The function

f3(u, u′;µ1) = e−λu−µ1u2

2 − e−λu′−µ1u′2
2

is increasing in µ1 until a maximum which is attained for

µ1max =
4 ln(u′

u )− 2λ(u′ − u)
u′2 − u2

,

and after this point it is decreasing at infinite. It results that the minimum of
the function f3 is attained in µ1∗(α) if µ1 ≤ µ1max or in µ∗1(α) for µ1 > µ1max.
So, it results that the minimum α-cut of the fuzzy probability for the event
(u ≤ g̃1 ≤ u′) is

q1
∗(α) = min

{
e−λu−µ1∗(α)u2

2 −e−λu′−µ1∗(α)u′2
2 , e−λu−µ∗1(α)u2

2 −e−λu′−µ∗1(α)u′2

2

}
. �

Lemma 4. If g̃2 is a fuzzy random variable linear exponential distributed
with λ real parameter given, and µ̃2 is a positive fuzzy number. Then we have
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the following relation for the minimum α-cut of the fuzzy probability of the
event (u′′ ≤ g̃2 ≤ u) is

q2
∗(α) = min

{
e−λu′′−µ2∗(α)u′′2

2 − e−λu−µ2∗(α)u2

2 , e−λu′′−µ∗2(α)u′′2

2 − e−λu−µ∗2(α)u2

2

}
for α ∈ [0, 1], where µ̃2[α] = [µ2∗(α), µ∗2(α)] .

Proof.

P̃ r
(
u′′ ≤ g̃2 ≤ u

)
[α] =

{ ∫ u

u′′
e−λg2−

µ2g2
2

2 (λ + µ2g2)dg2

∣∣∣ µ2 ∈ µ̃2[α]
}

=

=
{

e−λu′′−µ2u′′2
2 − e−λu−µ2u2

2

∣∣∣ µ̃2∗(α) ≤ µ2 ≤ µ̃∗2(α)
}

=
[
q2
∗(α), q2∗(α)

]
.

The function

f4(u′′, u;µ2) = e−λu′′−µ2u′′2
2 − e−λu−µ2u2

2

is increasing in µ2 until a maximum and and it is decreasing at infinite. So,
it results that the minimum of the function f4 is attained in µ2∗(α) for f4

increasing or in µ∗2(α) if f4 is decreasing. Thus, the minimum α-cut of the
fuzzy probability for the event (u′′ ≤ g̃2 ≤ u) is

q2
∗(α)= min

{
e−λu′′−µ2∗(α)u′′2

2 −e−λu−µ2∗(α)u2

2 , e−λu′′−µ∗2(α)u′′2

2 −e−λu−µ∗2(α)u2

2

}
. �

5. AN ALGORITHM FOR SOLVING THE DETERMINISTIC EQUIVALENT
OF THE FUZZY MINIMUM COST REBALANCING PROBLEM

5.1. The deterministic equivalent of the rebalancing problem

Depending on the choice of the parameters λi, i = 1, 2 for the functions
f1(u, u′;λ1) and f2(u, u′′;λ2), we have more cases for fuzzy chance constraints.

In this paper, we will consider further on the case, where the functions,
with unknown parameters λi, i = 1, 2 are decreasing. The others cases will
be treated likewise.

Theorem 2. Assume that g̃i is a fuzzy random variable linear exponen-
tial distributed with µ real parameter given, and λ̃i, i = 1, 2, is a positive fuzzy
number. Also, assume the following conditions λ1max < λ1 and λ2max < λ2.
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Then the problem
(
P3

)
is equivalent with the following problem

min
n∑

j=1

cj(yj)(P4)

subject to

e−λ∗1(α)u−µu2

2 − e−λ∗1(α)u′−µu′2
2 ≥ q∗1(α),

e−λ∗2(α)u′′−µu′′2
2 − e−λ∗2(α)u−µu2

2 ≥ q∗2(α),

M2 ≤
n∑

j=1

(yj + x0
j ) ≤ M1,

γ′j ≤ yj + x0
j ≤ γj , j = 1, . . . , n,

w0 ≤ 2
T∑

t=1

zt ≤ W0,

pt

n∑
j=1

(rjt − rj)yj − zt ≤ −pt

n∑
j=1

(rjt − rj)x0
j , t = 1, . . . , T.

Proof. This theorem results from Lemma 1 and Lemma 2. �

The deterministic equivalent of the minimum cost rebalancing problem
is a nonlinear programming problem. In what follows we will describe a con-
vergent algorithm in order to find a solution of this problem.

5.2. Subgradient method

We solve the nonlinear programming problem using the subgradient
method. The algorithm is simple, but it has a big running time. We con-
sider the triangular fuzzy numbers λ̃1 = (λ′1, λ1, λ

′′
1), λ̃2 = (λ′2, λ2, λ

′′
2), q̃1 =

(q′1, q1, q
′′
1) and q̃2 = (q′2, q2, q

′′
2).

From problem (P4) we obtain the following model.

min
n∑

j=1

cj(yj)(P5)

subject to

e

[
−λ′′1−α(λ′′1−λ1)

][∑n
j=1 rj(yj−x0

j )
]
−

µ

(∑n
j=1 rj(yj−x0

j )

)2

2 −
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− e

[
−λ′′1−α(λ′′1−λ1)

][∑n
j=1 r′j(yj−x0

j )
]
−

µ

(∑n
j=1 r′j(yj−x0

j )

)2

2 −
− q′′1 + α

(
q′′1 − q1

)
+ k1 = 0,

e

[
−λ′′2−α(λ′′2−λ2)

][∑n
j=1 r′′j (yj−x0

j )
]
−

µ

(∑n
j=1 r′′j (yj−x0

j )

)2

2 −

− e

[
−λ′′2−α(λ′′2−λ2)

][∑n
j=1 rj(yj−x0

j )
]
−

µ

(∑n
j=1 rj(yj−x0

j )

)2

2 −
− q′′12 + α

(
q′′2 − q2

)
+ k2 = 0,

n∑
j=1

(yj + x0
j )−M1 + k3 = 0,

n∑
j=1

(yj + x0
j )−M2 − k4 = 0,

yj + x0
j − γj + kj+4 = 0, j = 1, . . . , n,

yj + x0
j − γ′j − kj+n+4 = 0, j = 1, . . . , n,

2
T∑

t=1

zt −W0 + k2n+5 = 0,

2
T∑

t=1

zt −W0 − k2n+6 = 0,

pt

n∑
j=1

(rjt − rj)yj − zt + pt

n∑
j=1

(rjt − rj)x0
j + kt+2n+6, t = 1, . . . , T.

The solution set of problem (P5) is denote by S =
{(

y′, α, k
)
| y′ =(

y1, . . . , yn, z1, . . . , zT

)t
, k =

(
k1, . . . , k2n+T+6

)
, 0 ≤ α ≤ 1, ki ≥ 0

}
and is

a compact subset of R3n+2T+7. Let us consider g0 : Rn → R the objec-
tive function of the problem (P5) and g : R3n+2T+7 → R2n+T+6 the con-
straints function of the problem (P5), where we assume that g

(
y′, α, k

)
=(

g1, . . . , g2n+T+6

)t is a continuous function.
The augmented Lagrangian L associated with problem (P5) is

L : R3n+2T+7 ×R2n+T+6 ×R+ → R2n+T+6,

where

L
(
y′, α, k;u, c

)
= g0

(
y′, α, k

)
+ c

∥∥g(y′, α, k)
∥∥ +

〈
u, g

(
y′, α, k

)〉
,

with
(
y′, α, k

)
∈ S, u ∈ R2n+T+6, c ∈ R+ and ‖ · ‖ is the Euclidean norm, and

〈 〉 is the Euclidean inner product.
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So,
L

(
y′, α, k;u, c

)
=

=
n∑

j=1

cj(yj) + c

[(
e

[
−λ′′1−α(λ′′1−λ1)

][∑n
j=1 rj(yj−x0

j )
]
−

µ

(∑n
j=1 rj(yj−x0

j )

)2

2 −

−e

[
−λ′′1−α(λ′′1−λ1)

][∑n
j=1 r′j(yj−x0

j )
]
−

µ

(∑n
j=1 r′j(yj−x0

j )

)2

2 −q′′1 +α
(
q′′1 −q1

)
+k1

)2

+

+
(

e

[
−λ′′2−α(λ′′2−λ2)

][∑n
j=1 r′′j (yj−x0

j )
]
−

µ

(∑n
j=1 r′′j (yj−x0

j )

)2

2 −

−e

[
−λ′′2−α(λ′′2−λ2)

][∑n
j=1 rj(yj−x0

j )
]
−

µ

(∑n
j=1 rj(yj−x0

j )

)2

2 −q′′2 +α
(
q′′2 −q2

)
+k2

)2

+

+
( n∑

j=1

(yj + x0
j )−M1 + k3

)2

+
( n∑

j=1

(yj + x0
j )−M2 − k4

)2

+

+
n∑

j=1

(
yj + x0

j − γj + kj+4

)2 +
n∑

j=1

(
yj + x0

j − γ′j − kj+n+4

)2+

+
(

2
T∑

t=1

zt −W0 + k2n+5

)2

+
(

2
T∑

t=1

zt − w0 − k2n+6

)2

+

+
T∑

t=1

(
pt

n∑
j=1

(rjt − rj)yj − zt + pt

n∑
j=1

(rjt − rj)x0
j + kt+2n+6

)2] 1
2

+

u1

(
e

[
−λ′′1−α(λ′′1−λ1)

][∑n
j=1 rj(yj−x0

j )
]
−

µ

(∑n
j=1 rj(yj−x0

j )

)2

2 −

−e

[
−λ′′1−α(λ′′1−λ1)

][∑n
j=1 r′j(yj−x0

j )
]
−

µ

(∑n
j=1 r′j(yj−x0

j )

)2

2 − q′′1 + α
(
q′′1 − q1

)
+ k1

)
+

+u2

(
e

[
−λ′′2−α(λ′′2−λ2)

][∑n
j=1 r′′j (yj−x0

j )
]
−

µ

(∑n
j=1 r′′j (yj−x0

j )

)2

2 −

−e

[
−λ′′2−α(λ′′2−λ2)

][∑n
j=1 rj(yj−x0

j )
]
−

µ

(∑n
j=1 rj(yj−x0

j )

)2

2 − q′′2 + α
(
q′′2 − q2

)
+ k2

)
+

+u3

( n∑
j=1

(yj + x0
j )−M1 + k3

)
+ u4

( n∑
j=1

(yj + x0
j )−M2 − k4

)
+

+
n∑

j=1

uj+4

(
yj + x0

j − γj + kj+4

)
+

n∑
j=1

uj+n+4

(
yj + x0

j − γ′j − kj+n+4

)
+
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+u2n+5

(
2

T∑
t=1

zt −W0 + k2n+5

)
+ u2n+6

(
2

T∑
t=1

zt − w0 − k2n+6

)
+

+
T∑

t=1

ut+2n+6

(
pt

n∑
j=1

(rjt − rj)yj − zt + pt

n∑
j=1

(rjt − rj)x0
j + kt+2n+6

)
.

The dual function H is defined as

H(u, c) = min
(y′,α,k)∈S

L(y′, α, k;u; c), u ∈ R2n+T+6, c ∈ R+.

Then the dual problem of (P5) is given by

(P ∗
5 ) max

(u,c)∈R2n+T+6×R+

H(u, c).

The modified subgradient algorithm is devised for solving the dual prob-
lem. Let us outlines the steps of the algorithm:

Step 0. Choose a vector (u1, c1) with c1 ≥ 0, let p = 1 and go to the
Step 1.

Step 1. Given (up, cp), solve the following subproblem

min
(y′,α,k)∈S

L(y′, α, k;up; cp)

and let (y′p, αp, kp) any optimal solution. We have two situations:
• If g

(
y′p, αp, kp

)
= 0, then STOP; by Theorem 3, (up, cp) is a solution to

the dual problem and
(
y′p, αp, kp

)
is a solution to the primal problem;

• Otherwise, go to Step 2.
Step 2. Let

up+1 = up − spg
(
y′p, αp, kp

)
, cp+1 = cp + (sp + εp)

∥∥g
(
y′p, αp, kp

)∥∥ ,

where sp and εp are positive scalar stepsizes; replace p by p + 1 set p = p + 1
and repeat Step 1.

For proving the stoping step of the algorithm, we need the following
theorem from [11].

Theorem 3 (Theorem 5 from [6]). Let inf(P5) = sup(P ∗
5 ) and suppose

that for some

(ū, c̄) ∈ R2n+T+6 ×R+ and (ȳ′, ᾱ, k̄) ∈ R3n+2T+7,

min
(y′,α,k)∈S

L(y′, α, k; ū; c̄) = g0(ȳ′, ᾱ, k̄) + c̄
∥∥g(ȳ′, ᾱ, k̄)

∥∥ +
〈
ū, g(ȳ′, ᾱ, k̄)

〉
.

Then (ȳ′, ᾱ, k̄) is a solution to (P5) and (ū, c̄) is a solution to (P ∗
5 ) if and

only if g(ȳ′, ᾱ, k̄) = 0.

The next proposition demonstrates that for the certain values of step-
sizes εp and sp, the distance between the points (up+1, cp+1) generated by
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the algorithm and the solution (ū, c̄) of the dual problem, decrease at each
iteration.

Proposition 1 (stepsize). Let
(
up, cp) be any iteration which is not a

solution of the dual problem for any p, that is, from Theorem 3, g
(
y′p, αp, kp

)
6=

0 for all p. Then for any dual solution (ū, c̄), we have∥∥(ū, c̄)− (up+1, cp+1)
∥∥ < ‖(ū, c̄)− (up, cp)‖

for all stepsizes sp such that

0 < sp < 2
H(ū, c̄)−H(up+1, cp+1)

5
∥∥g

(
y′p, αp, kp

)∥∥2 , 0 < εp < sp.

Proof. We have∥∥(ū, c̄)− (up+1, cp+1)
∥∥2 =

∥∥ū− up+1
∥∥2 +

∣∣c̄− cp+1
∣∣2 =

=
∥∥ū− up + spg

(
y′p, αp, kp

)∥∥2 +
∣∣c̄− cp − (sp + εp)

∥∥g(y′p, αp, kp
)∥∥∣∣2 =

= ‖ū− up‖2 + 2sp(ū− up)tg
(
y′p, αp, kp

)
+ (sp)2

∥∥g
(
y′p, αp, kp

)∥∥2 + (c̄− cp)2−

−2(c̄− cp)(sp + εp)
∥∥g(y′p, αp, kp

)∥∥ + (sp + εp)2
∥∥g(y′p, αp, kp

)∥∥2
.

For
0 < εp < sp, c̄− cp > 0,

∥∥g(y′p, αp, kp
)∥∥ > 0

we have the inequality ∥∥(ū, c̄)− (up+1, cp+1)
∥∥2 =

= ‖ū− up‖2 + 2sp(ū− up)tg
(
y′p, αp, kp

)
+ (sp)2

∥∥g
(
y′p, αp, kp

)∥∥2 +

+(c̄− cp)2 − 2(c̄− cp)sp
∥∥g(y′p, αp, kp

)∥∥ + (2sp)2
∥∥g(y′p, αp, kp

)∥∥2
.

By using the subgradient inequality

H(ū, c̄)−H(up, cp) ≤ (ū− up)t
(
− g

(
y′p, αp, kp

))
+ (c̄− cp)

∥∥g(y′p, αp, kp
)∥∥

we obtain∥∥(ū, c̄)− (up+1, cp+1)
∥∥2

< ‖ū− up‖2 + c̄− cp)2 − 2sp
(
H(ū, c̄)−H(up, cp)

)
+

+5(sp)2
∥∥g(y′p, αp, kp

)∥∥2
.

The proof is complete. �

Proposition 2 (convergence of the algorithm). Let (up, cp) be any itera-
tion of the subgradient algorithm. Suppose that each new iteration (up+1, cp+1)
is calculated from Step 2 with sp = H(ū,c̄)−H(up,cp)

5‖g(y′p,αp,kp)‖2 , and 0 < εp < sp, where
H(ū, c̄) is the optimal dual value. Then H(up, cp) → H(ū, c̄).
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Proof. The proof of this proposition is similar with the proof of Theo-
rem 9 from [6]. �
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