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In this paper we introduce new definitions of vector topological pseudomono-
tonicity to study the parametric vector equilibrium problems with trifunctions.
The main result gives sufficient conditions for closedness of the solution map de-
fined on the set of parameters. The Hadamard well-posedness of parametric vector
equilibrium problems is also analyzed.
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1. INTRODUCTION

Bogdan and Kolumbaén [3] gave sufficient conditions for closedness of the
solution map defined on the set of parameters. They considered the parametric
equilibrium problems governed by topological pseudomonotone maps depen-
ding on a parameter. In this paper we generalize this result for parametric
vector equilibrium problems with trifunctions.

Let X and Y be Hausdorff topological spaces and P, the set of para-
meters, another Hausdorff topological space, T : X — 2 be a multi-valued
mapping.

Generalized vector equilibrium problems (GV E P for short) are obtained
from generalized equilibrium problems by considering trifunctions on K x D x
K into a real topological vector space Z with an ordering cone. By an ordering
cone C' C Z we mean that C is a closed convex cone in Z with Int C' # () and
C # Z, where Int C denotes the interior of C.

Let f, : X XY x X — Z be a trifunction. For a given p € P, we consider
the following problem (GV EP),:

Find a pair (zp,y,) € K, x T (x,) such that

Ip (@, yp,u) € (—Int C) for all u € K,
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where (— Int C')¢ is the complement of —Int C in Z and K, is a nonempty sub-
set of X. Such an x,, will be called a strong solution of the problem (GV EP),
in the sense that y, does not depend on u € K.

Let us denote by S (p) the set of the strong solutions for a fixed p. Sup-
pose that S (p) # 0, for all p € P. Some existence results for GV EP are given
in [7, 9, 10].

The paper is organized as follows. In Section 2, we recall the notions of
the vector topological pseudomonotonicity and the Mosco convergence of the
sets. Section 3 is devoted to the study of the closedness of solution map for
parametric vector equilibrium problems with trifunctions. In the final section,
we investigate the generalized Hadamard well-posedness of parametric vector
equilibrium problems with trifunctions.

2. PRELIMINARIES

In this section, we will introduce two new definitions of the vector topo-
logically pseudomonotone trifunctions with values in Z. First, the definition
of the suprema and the infima of subsets of Z are given. Following [1], for a
subset A of Z the suprema of A with respect to C is defined by

SuppA={z€A: AN(z+IntC) =0}
and the infima of A with respect to C' is defined by

InfA={z€A: AN(z—IntC) =0} .
For more details see [6].

Let (2;);c; be a net in Z. Let A; = {z; : j > i} for every ¢ in the index
set I. The limit inferior of (z;);.; is given by

Lim inf z; = Sup < U Inf Ai> .
i€l

Similarly, the limit superior of (z;);c; can be defined as

Limsup z; = Inf < U Sup Ai> .
el

We will use the following result.

THEOREM 2.1 ([8, Theorem 2.1]). Let (z;);c; be a net in Z convergent
to z and let A; = {z; : j > i}.

i) If there is an index ig such that, for every i > ig, there exists j > i
with Inf A; # (), then z € Liminf ;.

ii) If there is an index ig such that, for every i > ig, there exists j > i
with Sup Aj # 0, then z € Limsup z;.
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We introduce two new definitions of vector topologically pseudomono-
tonicity which play a central role in our main results.

Definition 2.2. Let (X,01) and (Y,02) be two Hausdorff topological
spaces, let f : X xY x X — Z be a trifunction. Then f is said to be of
class (SPMy) if for every u € X, w € IntC and for each net (z;,y;);c; in

01,02

X x Y satisfying (z;,9;) %
(y;) 2>y €Y) and

o1

(z,y) € X xY (ie, (x;) — x € X and

Liminf f (x;, y;,2) N (—Int C) = 0,
there is jo € I such that

{f(CUz,wa)ZZ]} C f(xayau)+w_1ntc
for all j > jo.

Definition 2.3. Let (X,01) and (Y,02) be two Hausdorff topological
spaces, let f : X xY x X — Z be a trifunction. Then f is said to be of
class (SPMjy) if for every u € X, w € IntC and for each net (z;,y;);c; in

X x Y satisfying (z;, ;) =Z (x,y) € X x Y and
Liminf f (x;,y;,x) =0 or Liminf f (z;,y;,2) N (—Int C)° # 0,
there is jo € I such that

{f(xhyivu) t2 j} - f(xayau) +w—IntC
for all j > jp.
The Definition 2.2 is a slight generalization of the notion of vector topo-
logical pseudomonotonicity given by Chiang, Chadli and Yao in [7].

The above definitions represents extensions to a vector framework of the
classical pseudomonotonicity notion introduced by Brézis [4].

Remark 2.4. Every function of class (SPM>) is a function of class (SPM).
The inverse relation does not take place in generally.

Ezample 2.5. Let the T : X — 2V set-valued be defined by T (z) = {1}
for every € X, and real vector function f : X xY x X — R?, where X = [0, 1]
and Y = [0, 1] given with
(yr —u,y —x) if x >0,

f@,y,u) = { (u,y) if =0,

where the ordering cone C' of R? is the third quadrant, i.e.,

C:{(xl,x2)€R22:L’1 SO, .’EQSO}
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The function f is of class (SPMj), but is not belonging to the class
(SPMs). Indeed, if we make the substitutions, the example become Exam-
ple 7 in [14].

Let us consider o1 and 7 two topologies on X. Suppose that 7 is stronger
than o1 on X.

For the parametric domains in (GV EP), we shall use a slight generali-
zation of Mosco’s convergence [11].

Definition 2.6 ([3, Definition 2.2]). Let K, be subsets of X for all p € P.

The sets K, converge to Kp, in the Mosco sense (K, M, K,,) as p — po if:
i) for every subnet (x,,)icr With z,, € K,., pi — po and x,, —  imply
x € Kpy;
i) for every = € K, there exist z,, € K, such that z, — x as p — po.

3. CLOSEDNESS OF THE SOLUTION MAP

This section is devoted to prove the closedness of the solution map for
parametric generalized vector equilibrium problems with trifunctions.

THEOREM 3.1. Let X and (Y, 02) Hausdorff topological spaces, the space
X is endowed with two topologies o1 and T, where o1 C 7. Let K, be nonempty
sets of X and let pg € P be fized. Suppose that S(pt) # O for each p € P and
the following conditions hold:

i) K, M, Ky, as p tends to po;

ii) for each net of elements (p;, (xp,, yp;)) € Graph S, if p; — po, (Tp,, Yp;)

L% (x,y), up, € Kp,, u € Kpy, and u,, — u then

Lim inf (fpz (xpm Ypi> upi) - fpo (xpz'a ypwu)) N (_ Int C) 7& ®>

where yp, € T (xp,);
iii) T: X — 2 is closed at x;
V) fpo : X XY x X — Z is of class (SPMy).
Then the solution map p — S (p) is closed at py, i.e., for each net of

01,0

elements (p;, (xp;,Yp;)) € GraphS, p; — po and (zp,,yp;,) —= (2,y) imply
(po, (x,y)) € Graph S.

Proof. Let (pi, (zp,, Yp,))icr be anet of elements (p;, (zp,, Yp,)) € Graph S,
ie.,

(3.1) Ipi (@p; s yp,u) € (—Int ), Vu € Kp,,

with p; — po and (zp,, yp,) =5 (,y). By the Mosco convergence of the sets

Kp,, we get © € Kj,. Moreover, there exists a net (up,),;, up, € K, such
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that u,, — . From the assumption ii) we obtain that

Liminf (fp, (Tp;s Yps> upi) — Fpo (Tpss Yps» ) N (= Int C) # 0.

Since —Int C' is an open cone, it follows that there exists a subnet
(Tp;» Yp:);e > denoted by the same indexes, such that

(3:2) Soi @piy Ypis p;) = fpo (Tpis Ypiyw) € —Int O, Vie I,
By replacing v with up, in (3.1) we get
(3.3) Foi (@, Ypys up,) € (—Int C)°.

From (3.2) and (3.3) we obtain that
Tpo (Tp; s Yp,» ) € (—Int C)°, for all i € 1.
Since (— Int C') is closed, it follows
Lim inf f,, (p,, Yp,» ) C (—Int C)°.

Now we can apply iv) and we obtain that for every u € K, w € Int C, there
exists j; € I such that

(34) {fpo (:Epi?ypivu) 3i2j}Cfp0 (x,y,u)—l—w—lntC’, vj Zjla

where y € T (x) which is true since y; € T (z;) and T is closed at x.
We have to prove that

fPO (l'ayau) € (—IntC)C, VUEKpO-

Assume the contrary, that there exists u € K, such that
Ipo (z,y,0) € —Int C.

Let be fp, (z,y,u) = —w where w € Int C. From (3.4) we obtain that there
exists j; € I such that

(3.5) {foo @p, yp;,0) 11>} C —w+w—-—IntC=—-IntC, Vj>j;.

Since u € K, from the Mosco convergence of the sets K, there exists
(Up,);e; C Kp, such that w, —— u. By using again the assumption ii), it
follows that there exists a subnet (zp,, ypi)ie ;> denoted by the same indexes,
for which

(3.6) Foi (@Tpis Yps» Upy) — fpo (Tpis Yps, @) € —Int C, for all ¢ € I.
From (3.5) and (3.6) it follows that

Ipi (@pys Yps Up,) € —Int C, 1 €1,
contradicting (3.1). Hence (po, (z,y)) € GraphS. O
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Remark 3.2. The Theorem 3.1 generalizes the Theorem 3.1 in [12] but
it does not imply the Theorem 1 in [3] since the assumption ii) cannot be
replaced by

ii") For each net of elements (p;, (2p,, Yp,)) € Graph S, if p; — po, (2p,, Yp,)

Lo (x,y), up, € Kp,, u € K, and uy, — w then

Lim inf (fpz (xpi’ ypwupi) - fpo (xpiaypivu)) N (_C) 7& (b

If we replace the assumption ii) with ii’) we have to give a stronger
condition to assumption iv).

THEOREM 3.3. Let X and (Y, 02) Hausdorff topological spaces, the space
X is endowed with two topologies o1 and T, where o1 C 7. Let K, be nonempty
sets of X and let pg € P be fized. Suppose that S (p) # 0 for each p € P and
the following conditions hold:

i) K, M, Ky, as p tends to po;

ii") for each net of elements (p;, (xp,;, Yp;)) € Graph S, if p; — po, (Xp,, Yp;)

B (2,y), up, € Kp,, u € Kpy, and uy, — u then

Liminf (fp, (Zpis Ypi> Up:) = fpo (T, Yp» ) N (=C) # 0,
where yp, € T (xp,);
iii) 7 : X — 2Y is closed at x;
iv) fpo : X XY X X — Z is of class (SPMa).
Then the solution map p — S (p) is closed at py.

Proof. The proof is given in the following three steps.

Step 1. Let (ps, (xp,, Yp;))icr be anet of elements (p;, (p,, yp,)) € Graph S,
ie.,
(3.7) I @pysypi,w) € (—Int C)°,  Vu € K,

with p; — po and (zp,, yp,) =5 (,y). By the Mosco convergence of the sets

Ky, we get x € Kp,. Moreover, there exists a net (uy,);.;, up, € Kj, such that
up, — . From the assumption ii’) we obtain that
(3.8) Liminf (fp, (@p;, Ypi, tp,) = fpo (T, Yp,, w)) N (=C) # 0.
Step 2. We will prove that (3.8) and (3.7) imply
Liminf fy, (@p,, Yp;, ) =0 or Liminf fp, (zp,, Yp,, ) N (—Int C)° # 0.
For this we can distinguish two cases:

Case 1. Liminf (fp, (2p,, Ypis Up,) = fpo (Tps» Yps» ) N (— It C) # 0.
Since — Int C' is an open cone, it follows that there exists a subnet, de-
noted by the same indexes, such that

(3.9) Foi (@pis Yps» Upy) — fpo (Tpis Ypsrx) € —Int C, for all ¢ € I.
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By replacing u with u,, in (3.7) we get
(3.10) I (Tpis Ypsr tp,) € (—Int C)°.
From (3.10) and (3.9) we obtain that
Iro (Tpis Ypir ) € (—Int C)°, for all i € 1.
Since (—Int C) is closed, it follows
Liminf fp, (p,, Yp;, ) € (—Int C)°

consequently

Liminf fp, (@p,, Yp;, ) =0 or Liminf fp, (2p,, Yp,, ) N (—Int C)° # 0.

Case 2. Lim inf (fpz (':Upi?ypi?upi) - fpo (wpm ypivx)) N (_ Int C) -
We can suppose that

(3.11) Foi @pys Ups tup;) — fpo (Tpys Yp» ) € (— Int c), viel
and
(3.12) fro @pys Ypssx) € —Int C, Viel

otherwise we get back the first case.

Since Liminf (fp, (p;, Ypss Up;) — fpo (Tpis Up;» @) N (—Int C) = 0, from
(3.8) and (3.11) it follows that, there exists a subnet (xp,, yp,), denoted by the

same indexes, for which
(3'13) (fpz (xpw Ypis upi) - fpo (xpiv Ypss li))jg[ converges
to the boundary of cone — C.
Indeed, otherwise it must exist ig € I such that
{foi @, Ypis up,) — fro (Tpis Ypir @) 16 20} C (=O)°
then from the definition of the limit inferior, we obtain that
Liminf (fp, (Tp;s Ypis tp;) — Fpo (Tpss Yps» 7)) € (=C)°,

which is in contradiction with assumption ii’).

From (3.12) and (3.13) we obtain that there exists a subnet (zp,,yp,),

denoted by the same indexes, such that
(3.14) (fpo (Tp;> Yp;» T)),c; converges to an element
in the boundary of the cone — C.
To prove this statement, let us suppose the contrary, that
{fo (@p;,Yp;sx) i€} C —IntC.
Then from (3.13) we obtain that

fpi (@p,; s Ups, up,) converges to an element in — Int C.
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Since —Int C is an open cone, it follows that there exists i1 € I such that
Ipi (@pys Upsr up,) € —Int C, for all i > iy,

contradicting (3.7).
By applying the Theorem 2.1 for the subnet in (3.14) we obtain that

Liminf fp,, (xp,, yp,, x) N (—=0C) # 0,
or there exists io € I such that
Inf { fpy (Tp;, Yps» @) 11 > 12} = 0.
This implies that
Lim inf fo, (@p,, Yp;, ©) N (—Int C)° # 0 or Liminf f,, (xp,, Yp,, ) = 0.

So, in both cases, we can apply iv) and we obtain that for every u € K,
and w € Int C, there exists jo € I such that

(3.15) {fpo (@i, yiyu) 16> j} C fpo (z,9,u) +w—Int C, V) > jo,
where y € T' (x) which is true since y; € T'(z;) and T is closed at x.

Step 3. We have to prove that
fpo (x,y,u) € (—Int C)°, Vue Kp,.
Assume the contrary, that there exists u € K, such that
fpo (z,y,0) € —Int C.

Let be fp, (z,y,u) = —w where w € Int C. From (3.15) we obtain that there
exists jo € I such that

(3.16) {fpo (@iyyi,u) 11> j}C—w+w—IntC =—-IntC, Vj > jo.

Since u € K, from the Mosco convergence of the sets K, we have that there
exists (Up,),c; C Kp, such that 1, — 7. By using again the assumption
it’), it follows that one of the next cases, corresponding to (3.9) and (3.13)
respectively, hold: there exists a subnet (x),, yp, ), denoted by the same indexes,
such that

(3.17) Soi @pis Ypis Up,) = fpo (T yp, ) € —Int €, Viel
or there exists a subnet (xp,,yp,), denoted by the same indexes, for which

(3-18) (fpz (wpw ypwﬂpi) - fpo (xpwypwﬂ))ie[ converges
to the boundary of cone — C.

From (3.16), (3.17) and (3.18) it follows that there exists j; € I such that

fpi (‘rpmypiaﬂpi) € —IHtC, 1 Z jl Z j07
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but on other side (p;, (xp,, yp,)) € Graph S, and

i (@pis YpisUp;) € (= Int C)°
which is a contradiction. Hence (pg, (z,y)) € GraphS. O

Remark 3.4. Theorem 3.3 implies Theorem 1 in [3] and Theorem 10
in [14].

Ezample 3.5. Let 01 = 09 = 7 be the natural topology on X =Y = [0, 1].
Let P =NU {0}, po = 00, (00 means +oo from real analysis), K, = (0, 1),
n € Nand K = [0,1]. On P we consider the topology induced by the metric
d given by d(m,n) = |1/m — 1/n|, d(n,c0) = d(co,n) = 1/n, for m,n € N,
and d(oco,00) = 0. Let us consider the third quadrant as the ordering cone C
in R2. The multi-valued mapping T': X — 2 be defined by T'(x) = [0, 1] for
every x € X.

Let the real vector functions f,, : [0,1] x [0,1] x [0,1] — R? be given by
falz,y,u) = (x—u—1/n,1+2x+y), n € N and the function fo : [0,1] x
[0,1] x [0,1] — R? be defined by foo(x,y,u) = (v — 2u, 2z +y +u) .

The function fo is of class (SPMa), since it is continuous. The mapping
T is closed at each x from X.

Only the assumption ii’) has to be verified. Let x,,u, € (0,1), z, — =
and u,, — u. One has

Lim inf (fn (xna Yn, Un) — foo («Tmymu)) =
= Liminf{(-1/n —up + 2u,1 — 2, —u), n > 1},
by Theorem 2.1 it follows that

(u,1 — 2 —u) € Liminf (fp, (Tn, Yn, Un) — foo (Tn,Yn, u)) .

The S (n) = {(z,y) € (0,1) x [0,1] : € (0,1/n]} for each n € N. Since 1 +
x 4y > 0 we obtain that

x—u—1/n>0 for every u € (0,1)

from where it follows z € (0,1/n]. Hence every sequence (x,) satisfying
(n, (zn,yn)) € Graph S has to converge to x = 0. From (u,1 —u) € —Int C' it
follows that the assumption ii’) takes place. By Theorem 3.3 we obtain that
the solution mapping S is closed at oco.

4. HADAMARD WELL-POSEDNESS

Let us recall some classical definitions from set-valued analysis. Let X,
Y be topological spaces. The map T : X — 2Y is said to be upper semi-
continuous at ug € domT := {u € X | T'(u) # 0} if for each neighborhood V'
of T'(ug), there exists a neighborhood U of ug such that T'(U) C V.
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Closedness and upper semi-continuity of a multifunction are closely re-
lated.

PROPOSITION 4.1 ([2, Proposition 1.4.8, 1.4.9]). Let T : X — 2¥ be a
set-valued map.

i) If T has closed values and is upper semi-continuous then T is closed.

i) If Y is compact and T is closed at x € X then T is upper semi-
continuous at x € X.

Now we recall the notion of generalized Hadamard well-posedness.

Definition 4.2. Let (X,01) and (Y,02) be two Hausdorff topological
spaces. The problem (GVEP), is said to be Hadamard well-posed (briefly,
H-wp) at po € P if S(po) = {(xpy,Yp,)} and for any (z,,y,) € S(p) one has
(2, Yp) Z (Xpy, Ypy)> @ p — po. The problem (GV EP), is said to be gen-
eralized Hadamard well-posed (briefly, gH-wp) at pg € P if S(pg) # 0 and
for any (z,,yp) € S(p), if p — po, (zp,yp) must have a subsequence (o1, 02)-
converging to an element of S(po).

With the help of the next result we are able to establish the relationship
between upper semi-continuity and Hadamard well-posedness.

PROPOSITION 4.3 ([15, Theorem 2.2]). Let T : X — 2¥ be a set-valued
map. If T is upper semi-continuous at x € X and T'(x) is compact, then T is
gH-wp at x. If more, T(x) = {y*}, then T is H-wp at x.

In the following we prove that the solution map of (GV EP), has closed
value at pg.

PROPOSITION 4.4. Let K, be closed with respect to the o1 topology and
T:X — 2 be a closed set-valued map. If fpo 1 X XY x X — Z is of class
(SPM), then S (po) is closed with respect to the (o1,02) topology pair.

01,02

Proof. Let S(po) # 0 and (z;,v;) € S(po), with (z;,v5) — (z,y).
Since K, is closed with respect to the o topology, we have z € K,,. From
(4,9:) € S (po) it follows that

fpo (@iyyir ) € (= Int C)°, Vi€l
Since (—Int C) is closed, we get
Lim inf f,, (i, yi,z) € (—Int C)°.

By using that f,, is of class (SPM;) we obtain that for every w € Int C' there
is jo in the index set I such that

(4.1) {fpo (i, yisu) i >3} C f(z,y,u) +w—IntC, Vj>jog, Yue Kp,.
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We have to prove that (z,y) € S (po), i.e.,
fpo (x,y,u) € (—Int C)°, Vue Kp,.
Assume the contrary, that there exists u € K, such that
fpo (z,y,7) € —Int C.
Let fp, (z,y,u) = —w where w € Int C. From (4.1) we obtain that

{foo (@isyiu):i>j}C—w+w—IntC=—-IntC, Vj> jo
which is a contradiction to (z;,y;) € S (po). Thus (x,y) € S (pg). O

Now we can formulate the following results.

COROLLARY 4.5. Let (X,01) be a compact Hausdorff topological space
and P be a Hausdorff topological space. Let K, be nonempty sets of X, and
K, be a closed subset of X . If the hypotheses of Theorem 3.1 are satisfied, then
(GVEP), is generalized Hadamard well-posed at py. Furthermore, if S(po) =
{(z,y)} (a singleton), then (GV EP), is Hadamard well-posed at py.

Proof. From Theorem 3.1 we obtain that the solution map S is closed
at po. By using Proposition 4.1 ii) it follows that S is upper semi-continuous
at po. The set S(po) is closed by Proposition 4.4, hence it is compact. The
conclusion follows from Proposition 4.3. [

From Remark 2.4 and Corollary 4.5 we obtain:

COROLLARY 4.6. Let (X,01) be a compact Hausdorff topological space
and P be a Hausdorff topological space. Let K, be nonempty sets of X and
K, be a closed subset of X . If the hypotheses of Theorem 3.3 are satisfied, then
(GVEP), is generalized Hadamard well-posed at py. Furthermore, if S(po) =
{(z,y)} (a singleton), then (GV EP), is Hadamard well-posed at py.
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