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In this paper we introduce new definitions of vector topological pseudomono-
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1. INTRODUCTION

Bogdan and Kolumbán [3] gave sufficient conditions for closedness of the
solution map defined on the set of parameters. They considered the parametric
equilibrium problems governed by topological pseudomonotone maps depen-
ding on a parameter. In this paper we generalize this result for parametric
vector equilibrium problems with trifunctions.

Let X and Y be Hausdorff topological spaces and P , the set of para-
meters, another Hausdorff topological space, T : X → 2Y be a multi-valued
mapping.

Generalized vector equilibrium problems (GV EP for short) are obtained
from generalized equilibrium problems by considering trifunctions on K×D×
K into a real topological vector space Z with an ordering cone. By an ordering
cone C ⊂ Z we mean that C is a closed convex cone in Z with Int C 6= ∅ and
C 6= Z, where IntC denotes the interior of C.

Let fp : X×Y ×X → Z be a trifunction. For a given p ∈ P , we consider
the following problem (GV EP )p:

Find a pair (xp, yp) ∈ Kp × T (xp) such that

fp (xp, yp, u) ∈ (− IntC)c for all u ∈ Kp,
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where (− IntC)c is the complement of − IntC in Z and Kp is a nonempty sub-
set of X. Such an xp will be called a strong solution of the problem (GV EP )p

in the sense that yp does not depend on u ∈ Kp.
Let us denote by S (p) the set of the strong solutions for a fixed p. Sup-

pose that S (p) 6= ∅, for all p ∈ P . Some existence results for GV EP are given
in [7, 9, 10].

The paper is organized as follows. In Section 2, we recall the notions of
the vector topological pseudomonotonicity and the Mosco convergence of the
sets. Section 3 is devoted to the study of the closedness of solution map for
parametric vector equilibrium problems with trifunctions. In the final section,
we investigate the generalized Hadamard well-posedness of parametric vector
equilibrium problems with trifunctions.

2. PRELIMINARIES

In this section, we will introduce two new definitions of the vector topo-
logically pseudomonotone trifunctions with values in Z. First, the definition
of the suprema and the infima of subsets of Z are given. Following [1], for a
subset A of Z the suprema of A with respect to C is defined by

SupA =
{
z ∈ Ā : A ∩ (z + IntC) = ∅

}
and the infima of A with respect to C is defined by

Inf A =
{
z ∈ Ā : A ∩ (z − IntC) = ∅

}
.

For more details see [6].
Let (zi)i∈I be a net in Z. Let Ai = {zj : j ≥ i} for every i in the index

set I. The limit inferior of (zi)i∈I is given by

Lim inf zi = Sup
( ⋃

i∈I

Inf Ai

)
.

Similarly, the limit superior of (zi)i∈I can be defined as

Lim sup zi = Inf
( ⋃

i∈I

SupAi

)
.

We will use the following result.

Theorem 2.1 ([8, Theorem 2.1]). Let (zi)i∈I be a net in Z convergent
to z and let Ai = {zj : j ≥ i}.

i) If there is an index i0 such that, for every i ≥ i0, there exists j ≥ i
with Inf Aj 6= ∅, then z ∈ Lim inf zi.

ii) If there is an index i0 such that, for every i ≥ i0, there exists j ≥ i
with SupAj 6= ∅, then z ∈ Lim sup zi.



3 Closedness of the solution map 319

We introduce two new definitions of vector topologically pseudomono-
tonicity which play a central role in our main results.

Definition 2.2. Let (X, σ1) and (Y, σ2) be two Hausdorff topological
spaces, let f : X × Y × X → Z be a trifunction. Then f is said to be of
class (SPM1) if for every u ∈ X, w ∈ IntC and for each net (xi, yi)i∈I in
X × Y satisfying (xi, yi)

σ1,σ2−→ (x, y) ∈ X × Y (i.e., (xi)
σ1−→ x ∈ X and

(yi)
σ2−→ y ∈ Y ) and

Lim inf f (xi, yi, x) ∩ (− IntC) = ∅,

there is j0 ∈ I such that

{f (xi, yi, u) : i ≥ j} ⊂ f (x, y, u) + w − IntC

for all j ≥ j0.

Definition 2.3. Let (X, σ1) and (Y, σ2) be two Hausdorff topological
spaces, let f : X × Y × X → Z be a trifunction. Then f is said to be of
class (SPM2) if for every u ∈ X, w ∈ IntC and for each net (xi, yi)i∈I in
X × Y satisfying (xi, yi)

σ1,σ2−→ (x, y) ∈ X × Y and

Lim inf f (xi, yi, x) = ∅ or Lim inf f (xi, yi, x) ∩ (− IntC)c 6= ∅,

there is j0 ∈ I such that

{f (xi, yi, u) : i ≥ j} ⊂ f (x, y, u) + w − IntC

for all j ≥ j0.

The Definition 2.2 is a slight generalization of the notion of vector topo-
logical pseudomonotonicity given by Chiang, Chadli and Yao in [7].

The above definitions represents extensions to a vector framework of the
classical pseudomonotonicity notion introduced by Brézis [4].

Remark 2.4. Every function of class (SPM2) is a function of class (SPM1).
The inverse relation does not take place in generally.

Example 2.5. Let the T : X → 2Y set-valued be defined by T (x) = {1}
for every x ∈ X, and real vector function f : X×Y ×X → R2, where X = [0, 1]
and Y = [0, 1] given with

f(x, y, u) =

{
(yx− u, y − x) if x > 0,

(u, y) if x = 0,

where the ordering cone C of R2 is the third quadrant, i.e.,

C =
{
(x1, x2) ∈ R2 : x1 ≤ 0, x2 ≤ 0

}
.
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The function f is of class (SPM1), but is not belonging to the class
(SPM2). Indeed, if we make the substitutions, the example become Exam-
ple 7 in [14].

Let us consider σ1 and τ two topologies on X. Suppose that τ is stronger
than σ1 on X.

For the parametric domains in (GV EP )p we shall use a slight generali-
zation of Mosco’s convergence [11].

Definition 2.6 ([3, Definition 2.2]). Let Kp be subsets of X for all p ∈ P .

The sets Kp converge to Kp0 in the Mosco sense (Kp
M−→ Kp0) as p → p0 if:

i) for every subnet (xpi)i∈I with xpi ∈ Kpi , pi → p0 and xpi

σ1−→ x imply
x ∈ Kp0 ;

ii) for every x ∈ Kp0 , there exist xp ∈ Kp such that xp
τ−→ x as p → p0.

3. CLOSEDNESS OF THE SOLUTION MAP

This section is devoted to prove the closedness of the solution map for
parametric generalized vector equilibrium problems with trifunctions.

Theorem 3.1. Let X and (Y, σ2) Hausdorff topological spaces, the space
X is endowed with two topologies σ1 and τ , where σ1 ⊆ τ . Let Kp be nonempty
sets of X and let p0 ∈ P be fixed. Suppose that S(pt) 6= ∅ for each p ∈ P and
the following conditions hold:

i) Kp
M−→ Kp0 as p tends to p0;

ii) for each net of elements (pi, (xpi , ypi)) ∈ GraphS, if pi → p0, (xpi , ypi)
σ1,σ2−→ (x, y) , upi ∈ Kpi , u ∈ Kp0 , and upi

τ−→ u then

Lim inf (fpi (xpi , ypi , upi)− fp0 (xpi , ypi , u)) ∩ (− IntC) 6= ∅,

where ypi ∈ T (xpi);
iii) T : X → 2Y is closed at x;
iv) fp0 : X × Y ×X → Z is of class (SPM1).
Then the solution map p → S (p) is closed at p0, i.e., for each net of

elements (pi, (xpi , ypi)) ∈ GraphS, pi → p0 and (xpi , ypi)
σ1,σ2−→ (x, y) imply

(p0, (x, y)) ∈ GraphS.

Proof. Let (pi, (xpi , ypi))i∈I be a net of elements (pi, (xpi , ypi)) ∈ GraphS,
i.e.,

(3.1) fpi (xpi , ypi , u) ∈ (− IntC)c , ∀u ∈ Kpi ,

with pi → p0 and (xpi , ypi)
σ1,σ2−→ (x, y). By the Mosco convergence of the sets

Kpi , we get x ∈ Kp0 . Moreover, there exists a net (upi)i∈I , upi ∈ Kpi such
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that upi

τ→ x. From the assumption ii) we obtain that

Lim inf (fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x)) ∩ (− IntC) 6= ∅.

Since − IntC is an open cone, it follows that there exists a subnet
(xpi , ypi)i∈I , denoted by the same indexes, such that

(3.2) fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x) ∈ − IntC, ∀ i ∈ I.

By replacing u with upi in (3.1) we get

(3.3) fpi (xpi , ypi , upi) ∈ (− IntC)c .

From (3.2) and (3.3) we obtain that

fp0 (xpi , ypi , x) ∈ (− IntC)c , for all i ∈ I.

Since (− IntC)c is closed, it follows

Lim inf fp0 (xpi , ypi , x) ⊂ (− IntC)c .

Now we can apply iv) and we obtain that for every u ∈ Kp0 , w ∈ IntC, there
exists j1 ∈ I such that

(3.4) {fp0 (xpi , ypi , u) : i ≥ j} ⊂ fp0 (x, y, u) + w − IntC, ∀j ≥ j1,

where y ∈ T (x) which is true since yi ∈ T (xi) and T is closed at x.
We have to prove that

fp0 (x, y, u) ∈ (− IntC)c , ∀u ∈ Kp0 .

Assume the contrary, that there exists u ∈ Kp0 such that

fp0 (x, y, u) ∈ − IntC.

Let be fp0 (x, y, u) = −w where w ∈ IntC. From (3.4) we obtain that there
exists j1 ∈ I such that

(3.5) {fp0 (xpi , ypi , u) : i ≥ j} ⊂ −w + w − IntC = − IntC, ∀j ≥ j1.

Since u ∈ Kp0 from the Mosco convergence of the sets Kpi there exists
(upi)i∈I ⊂ Kpi such that upi

τ−→ u. By using again the assumption ii), it
follows that there exists a subnet (xpi , ypi)i∈I , denoted by the same indexes,
for which

(3.6) fpi (xpi , ypi , upi)− fp0 (xpi , ypi , u) ∈ − IntC, for all i ∈ I.

From (3.5) and (3.6) it follows that

fpi (xpi , ypi , upi) ∈ − IntC, i ∈ I,

contradicting (3.1). Hence (p0, (x, y)) ∈ GraphS. �
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Remark 3.2. The Theorem 3.1 generalizes the Theorem 3.1 in [12] but
it does not imply the Theorem 1 in [3] since the assumption ii) cannot be
replaced by

ii′) For each net of elements (pi, (xpi , ypi)) ∈ GraphS, if pi → p0, (xpi , ypi)
σ1,σ2−→ (x, y) , upi ∈ Kpi , u ∈ Kp0 , and upi

τ−→ u then

Lim inf (fpi (xpi , ypi , upi)− fp0 (xpi , ypi , u)) ∩ (−C) 6= ∅.

If we replace the assumption ii) with ii′) we have to give a stronger
condition to assumption iv).

Theorem 3.3. Let X and (Y, σ2) Hausdorff topological spaces, the space
X is endowed with two topologies σ1 and τ , where σ1 ⊆ τ . Let Kp be nonempty
sets of X and let p0 ∈ P be fixed. Suppose that S (p) 6= ∅ for each p ∈ P and
the following conditions hold:

i) Kp
M−→ Kp0 as p tends to p0;

ii′) for each net of elements (pi, (xpi , ypi)) ∈ GraphS, if pi → p0, (xpi , ypi)
σ1,σ2−→ (x, y) , upi ∈ Kpi , u ∈ Kp0 , and upi

τ→ u then

Lim inf (fpi (xpi , ypi , upi)− fp0 (xpi , ypi , u)) ∩ (−C) 6= ∅,
where ypi ∈ T (xpi);

iii) T : X → 2Y is closed at x;
iv) fp0 : X × Y ×X → Z is of class (SPM2).
Then the solution map p → S (p) is closed at p0.

Proof. The proof is given in the following three steps.
Step 1. Let (pi, (xpi , ypi))i∈I be a net of elements (pi, (xpi , ypi)) ∈ GraphS,

i.e.,

(3.7) fpi (xpi , ypi , u) ∈ (− IntC)c , ∀u ∈ Kpi

with pi → p0 and (xpi , ypi)
σ1,σ2−→ (x, y). By the Mosco convergence of the sets

Kpi we get x ∈ Kp0 . Moreover, there exists a net (upi)i∈I , upi ∈ Kpi such that
upi

τ−→ x. From the assumption ii′) we obtain that

(3.8) Lim inf (fpi (xpi , ypi , upi)− fp0 (xpi , ypi , u)) ∩ (−C) 6= ∅.
Step 2. We will prove that (3.8) and (3.7) imply

Lim inf fp0 (xpi , ypi , x) = ∅ or Lim inf fp0 (xpi , ypi , x) ∩ (− IntC)c 6= ∅.
For this we can distinguish two cases:

Case 1. Lim inf (fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x)) ∩ (− IntC) 6= ∅.
Since − IntC is an open cone, it follows that there exists a subnet, de-

noted by the same indexes, such that

(3.9) fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x) ∈ − IntC, for all i ∈ I.
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By replacing u with upi in (3.7) we get

(3.10) fpi (xpi , ypi , upi) ∈ (− IntC)c .

From (3.10) and (3.9) we obtain that

fp0 (xpi , ypi , x) ∈ (− IntC)c , for all i ∈ I.

Since (− IntC)c is closed, it follows

Lim inf fp0 (xpi , ypi , x) ∈ (− IntC)c

consequently

Lim inf fp0 (xpi , ypi , x) = ∅ or Lim inf fp0 (xpi , ypi , x) ∩ (− IntC)c 6= ∅.

Case 2. Lim inf (fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x)) ∩ (− IntC) = ∅.
We can suppose that

(3.11) fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x) ∈ (− IntC)c , ∀ i ∈ I

and

(3.12) fp0 (xpi , ypi , x) ∈ − IntC, ∀ i ∈ I

otherwise we get back the first case.
Since Lim inf (fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x)) ∩ (− IntC) = ∅, from

(3.8) and (3.11) it follows that, there exists a subnet (xpi , ypi), denoted by the
same indexes, for which

(fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x))i∈I converges(3.13)
to the boundary of cone − C.

Indeed, otherwise it must exist i0 ∈ I such that

{fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x) : i ≥ i0} ⊂ (−C)c

then from the definition of the limit inferior, we obtain that

Lim inf (fpi (xpi , ypi , upi)− fp0 (xpi , ypi , x)) ⊂ (−C)c ,

which is in contradiction with assumption ii′).
From (3.12) and (3.13) we obtain that there exists a subnet (xpi , ypi),

denoted by the same indexes, such that

(fp0 (xpi , ypi , x))i∈I converges to an element(3.14)
in the boundary of the cone − C.

To prove this statement, let us suppose the contrary, that

{fp0 (xpi , ypi , x) : i ∈ I} ⊂ − IntC.

Then from (3.13) we obtain that

fpi(xpi , ypi , upi) converges to an element in − IntC.
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Since − IntC is an open cone, it follows that there exists i1 ∈ I such that

fpi(xpi , ypi , upi) ∈ − IntC, for all i ≥ i1,

contradicting (3.7).
By applying the Theorem 2.1 for the subnet in (3.14) we obtain that

Lim inf fp0 (xpi , ypi , x) ∩ (−∂C) 6= ∅,

or there exists i2 ∈ I such that

Inf {fp0 (xpi , ypi , x) : i ≥ i2} = ∅.

This implies that

Lim inf fp0 (xpi , ypi , x) ∩ (− IntC)c 6= ∅ or Lim inf fp0 (xpi , ypi , x) = ∅.

So, in both cases, we can apply iv) and we obtain that for every u ∈ Kp0

and w ∈ IntC, there exists j0 ∈ I such that

(3.15) {fp0 (xi, yi, u) : i ≥ j} ⊂ fp0 (x, y, u) + w − IntC, ∀j ≥ j0,

where y ∈ T (x) which is true since yi ∈ T (xi) and T is closed at x.

Step 3. We have to prove that

fp0 (x, y, u) ∈ (− IntC)c , ∀u ∈ Kp0 .

Assume the contrary, that there exists u ∈ Kp0 such that

fp0 (x, y, u) ∈ − IntC.

Let be fp0 (x, y, u) = −w where w ∈ IntC. From (3.15) we obtain that there
exists j0 ∈ I such that

(3.16) {fp0 (xi, yi, u) : i ≥ j} ⊂ −w + w − IntC = − IntC, ∀j ≥ j0.

Since u ∈ Kp0 from the Mosco convergence of the sets Kpi , we have that there
exists (upi)i∈I ⊂ Kpi such that upi

τ−→ u. By using again the assumption
ii′), it follows that one of the next cases, corresponding to (3.9) and (3.13)
respectively, hold: there exists a subnet (xpi , ypi), denoted by the same indexes,
such that

(3.17) fpi (xpi , ypi , upi)− fp0 (xpi , ypi , u) ∈ − IntC, ∀ i ∈ I

or there exists a subnet (xpi , ypi), denoted by the same indexes, for which

(fpi (xpi , ypi , upi)− fp0 (xpi , ypi , u))i∈I converges(3.18)
to the boundary of cone − C.

From (3.16), (3.17) and (3.18) it follows that there exists j1 ∈ I such that

fpi (xpi , ypi , upi) ∈ − IntC, i ≥ j1 ≥ j0,
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but on other side (pi, (xpi , ypi)) ∈ GraphS, and

fpi (xpi , ypi , upi) ∈ (− IntC)c

which is a contradiction. Hence (p0, (x, y)) ∈ GraphS. �

Remark 3.4. Theorem 3.3 implies Theorem 1 in [3] and Theorem 10
in [14].

Example 3.5. Let σ1 = σ2 = τ be the natural topology on X = Y = [0, 1].
Let P = N ∪ {∞}, p0 = ∞, (∞ means +∞ from real analysis), Kn = (0, 1),
n ∈ N and K∞ = [0, 1]. On P we consider the topology induced by the metric
d given by d(m,n) = |1/m− 1/n|, d(n,∞) = d(∞, n) = 1/n, for m,n ∈ N,
and d(∞,∞) = 0. Let us consider the third quadrant as the ordering cone C
in R2. The multi-valued mapping T : X → 2Y be defined by T (x) = [0, 1] for
every x ∈ X.

Let the real vector functions fn : [0, 1] × [0, 1] × [0, 1] → R2 be given by
fn(x, y, u) = (x− u− 1/n, 1 + x + y), n ∈ N and the function f∞ : [0, 1] ×
[0, 1]× [0, 1] → R2 be defined by f∞(x, y, u) = (x− 2u, 2x + y + u) .

The function f∞ is of class (SPM2), since it is continuous. The mapping
T is closed at each x from X.

Only the assumption ii′) has to be verified. Let xn, un ∈ (0, 1), xn → x
and un → u. One has

Lim inf (fn (xn, yn, un)− f∞ (xn, yn, u)) =

= Lim inf {(−1/n− un + 2u, 1− xn − u) , n ≥ 1} ,

by Theorem 2.1 it follows that

(u, 1− x− u) ∈ Lim inf (fn (xn, yn, un)− f∞ (xn, yn, u)) .

The S (n) = {(x, y) ∈ (0, 1)× [0, 1] : x ∈ (0, 1/n]} for each n ∈ N. Since 1 +
x + y > 0 we obtain that

x− u− 1/n ≥ 0 for every u ∈ (0, 1)

from where it follows x ∈ (0, 1/n]. Hence every sequence (xn) satisfying
(n, (xn, yn)) ∈ GraphS has to converge to x = 0. From (u, 1− u) ∈ − IntC it
follows that the assumption ii′) takes place. By Theorem 3.3 we obtain that
the solution mapping S is closed at ∞.

4. HADAMARD WELL-POSEDNESS

Let us recall some classical definitions from set-valued analysis. Let X,
Y be topological spaces. The map T : X → 2Y is said to be upper semi-
continuous at u0 ∈ dom T := {u ∈ X | T (u) 6= ∅} if for each neighborhood V
of T (u0), there exists a neighborhood U of u0 such that T (U) ⊂ V .
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Closedness and upper semi-continuity of a multifunction are closely re-
lated.

Proposition 4.1 ([2, Proposition 1.4.8, 1.4.9]). Let T : X → 2Y be a
set-valued map.

i) If T has closed values and is upper semi-continuous then T is closed.
ii) If Y is compact and T is closed at x ∈ X then T is upper semi-

continuous at x ∈ X.

Now we recall the notion of generalized Hadamard well-posedness.

Definition 4.2. Let (X, σ1) and (Y, σ2) be two Hausdorff topological
spaces. The problem (GV EP )p is said to be Hadamard well-posed (briefly,
H-wp) at p0 ∈ P if S(p0) = {(xp0 , yp0)} and for any (xp, yp) ∈ S(p) one has
(xp, yp)

σ1,σ2−→ (xp0 , yp0), as p → p0. The problem (GV EP )p is said to be gen-
eralized Hadamard well-posed (briefly, gH-wp) at p0 ∈ P if S(p0) 6= ∅ and
for any (xp, yp) ∈ S(p), if p → p0, (xp, yp) must have a subsequence (σ1, σ2)-
converging to an element of S(p0).

With the help of the next result we are able to establish the relationship
between upper semi-continuity and Hadamard well-posedness.

Proposition 4.3 ([15, Theorem 2.2]). Let T : X → 2Y be a set-valued
map. If T is upper semi-continuous at x ∈ X and T (x) is compact, then T is
gH-wp at x. If more, T (x) = {y∗}, then T is H-wp at x.

In the following we prove that the solution map of (GV EP )p has closed
value at p0.

Proposition 4.4. Let Kp0 be closed with respect to the σ1 topology and
T : X → 2Y be a closed set-valued map. If fp0 : X × Y ×X → Z is of class
(SPM1), then S (p0) is closed with respect to the (σ1, σ2) topology pair.

Proof. Let S (p0) 6= ∅ and (xi, yi) ∈ S (p0), with (xi, yi)
σ1,σ2−→ (x, y).

Since Kp0 is closed with respect to the σ1 topology, we have x ∈ Kp0 . From
(xi, yi) ∈ S (p0) it follows that

fp0 (xi, yi, x) ∈ (− IntC)c , ∀ i ∈ I.

Since (− IntC)c is closed, we get

Lim inf fp0 (xi, yi, x) ∈ (− IntC)c .

By using that fp0 is of class (SPM1) we obtain that for every w ∈ IntC there
is j0 in the index set I such that

(4.1) {fp0 (xi, yi, u) : i ≥ j} ⊂ f (x, y, u) + w − IntC, ∀j ≥ j0, ∀u ∈ Kp0 .
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We have to prove that (x, y) ∈ S (p0), i.e.,

fp0 (x, y, u) ∈ (− IntC)c , ∀u ∈ Kp0 .

Assume the contrary, that there exists u ∈ Kp0 such that

fp0 (x, y, u) ∈ − IntC.

Let fp0 (x, y, u) = −w where w ∈ IntC. From (4.1) we obtain that

{fp0 (xi, yi, u) : i ≥ j} ⊂ −w + w − IntC = − IntC, ∀j ≥ j0

which is a contradiction to (xi, yi) ∈ S (p0). Thus (x, y) ∈ S (p0). �

Now we can formulate the following results.

Corollary 4.5. Let (X, σ1) be a compact Hausdorff topological space
and P be a Hausdorff topological space. Let Kp be nonempty sets of X, and
Kp0 be a closed subset of X. If the hypotheses of Theorem 3.1 are satisfied, then
(GV EP )p is generalized Hadamard well-posed at p0. Furthermore, if S(p0) =
{(x, y)} (a singleton), then (GV EP )p is Hadamard well-posed at p0.

Proof. From Theorem 3.1 we obtain that the solution map S is closed
at p0. By using Proposition 4.1 ii) it follows that S is upper semi-continuous
at p0. The set S(p0) is closed by Proposition 4.4, hence it is compact. The
conclusion follows from Proposition 4.3. �

From Remark 2.4 and Corollary 4.5 we obtain:

Corollary 4.6. Let (X, σ1) be a compact Hausdorff topological space
and P be a Hausdorff topological space. Let Kp be nonempty sets of X and
Kp0 be a closed subset of X. If the hypotheses of Theorem 3.3 are satisfied, then
(GV EP )p is generalized Hadamard well-posed at p0. Furthermore, if S(p0) =
{(x, y)} (a singleton), then (GV EP )p is Hadamard well-posed at p0.
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