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The paper focuses mainly on the possibility of interpreting and solving some
constrained statistical decision models as specific cases of an infinite dimensional
programming problem, P . The particularity of P is the lack of any topological
or vector structure of the parameter set. Program P covers a broad variety of
classical models of statistical decision theory, including testing multiple hypotheses
and restricted (constraint) classification, etc.
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1. INTRODUCTION

The paper focuses mainly on the possibility of interpreting and solving
some constrained statistical decision models as specific cases of an infinite
dimensional programming problem. The particularity of the approach is the
lack of any topological or vector structure of the parameter set.

A variety of testing statistical hypotheses models can be obtained for
appropriate choices of parameter sets: most stringent test of Wald (see [14])
minimax tests (see [10]), weighted tests of Krafft (see [8]), constraints clas-
sification (see [1]), (a) symmetrical multiple tests (see [9]), constrained clas-
sification in non-mutually exclusive and non-exhaustive classes, etc.

Throughout this paper a minimax program, called “Program P”, will be
considered. Actually, neither the definition of P is the most general, nor the
properties of P are exhaustively studied. We limit ourselves to describing some
general results, general enough for covering solution-description of a broad
variety of statistical decision models, including above mentioned problems. We
focus mainly on the existence of optimal solution of Program P and on some
necessary conditions for an n-dimensional decision function for being optimal
solution. Some sufficient conditions of optimality will be derived too, but this
is not our main issue. Reader can find some detailed proofs of sufficiency for
below mentioned Examples 1–4 in References of the paper.
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To solve Program P we chose to use a classic minimax result. It is
a Kneser-Fan minimax theorem for concave-convex functions (see [4]), in
Terkelsen’s reformulation ([13]).

The decision of giving here a detailed proof of Program P , is explained
by our intention to offer for the reader interested in statistical decision theory
a general enough tool in a (relatively short) standalone text.

We briefly outline two general statistical decision contexts which Pro-
gram P is useful for.

I. Let consider the n-dimensional, n ≥ 2, decision (action) set {A1, A2,
. . . , An}. The decider makes his choice taking into account the values of an
observable variable X on space X. Decision variable X is a random variable
whose probability distribution P θ is depending on parameter θ. Moreover, the
hypothesis is that a reward function is known. Definitely, the reward (or loss)
is hθj(x) ∈ R where x ∈ X is the observed value of X; Aj is the chosen action;
θ is the actual value of parameter. The parameter space Θ is known, but the
issue at hand is that neither the actual value of parameter θ ∈ Θ is observable
nor a probability distribution on Θ is known.

Having in mind that the decider exclusively bases his choices on the
observed values x ∈ X, it is useful to replace action set {A1, A2, . . . , An} by
the vector of multiple decision φ(x) := (φ1(x), . . . , φn(x)), where φj(x) is the
conditional probability to decide in favor of action (alternative) j, given the
value x ∈ X of random variable X, j = 1, . . . , n.

In the above framework, an usual conservative optimality criterion is
maxi-min reward

min
θ∈Θ

n∑
j=1

∫
X
φj(x)hθj(x)dP

θ(x) = max
φ
.

II. Consider the random variable X which has a distribution P θ and a
probability density ρθ, dependent on the unobservable parameter θ. In one
of the following known sets parameter θ could be Θ1,Θ2, . . . ,Θn. The n-
dimensional hypothesis set {H1,H2, . . . ,Hn}, is of interest, where hypothesis
Hj is θ ∈ Θj . Decider is interested in making a correct guess of the hypothesis
Hj for the actual θ, the only information he can use being the observed value
x ∈ X of X. If the decider establishes φ := (φ1, . . . , φn), n ≥ 2, as his strategy,
probability of decision in favor of Hj is, for given θ ∈ Θk,

Pθ (decision = Hj) := Eθ(φj(X)) =
∫
X
φj(x)dP θ(x) =

∫
X
φj(x)ρθ(x)dµ(x).

If θ ∈ Θj , then Eθ(φj(X)) is a probability of a correct decision. To the
contrary, if θ /∈ Θj , then Eθ(φj(X)) is a probability of an incorrect decision.
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It could be of interest to design decision procedures that control some (linear
combination of) probabilities of (in)correct decision.

To start with, we list four examples, particular cases of Program P ,
cases defined in a typical context of theory of testing (multiple) statistical
hypotheses.

Example 1 (Fundamental lemma of Neyman and Pearson, [12], [11]).
Find critical function ψ∗ ∈ Ψ, Ψ := {ψ : X → [0, 1]}, such that∫

X
ψ∗(x)fm+1(x)dµ(x) = max

ψ∈Ψ
,

∫
X
ψ∗(x)fi(x)dµ(x) = ci, i = 1, . . . ,m.

Example 2 (Maximin test of level α, [10]). Find critical function ψ∗ ∈ Ψ
such that if 0 < α < 1

inf
θ∈Θ2

Eθ(ψ∗(X)) = max
ψ∈Ψ

, Eθ(ψ∗(X)) ≤ α, (∀) θ ∈ Θ1.

Example 3 (Weighted test PW, [8]). Find critical function ψ∗ ∈ Ψ such
that

e2 inf
θ∈Θ2

Eθ(ψ∗(X))− e1 inf
θ∈Θ1

Eθ(ψ∗(X))) = max
ψ∈Ψ

.

Example 4 (Asymmetrical problem PA, [9]). Find multiple decision φ∗ ∈
G, for 1 ≤ k ≤ n− 1, n ≥ 2 such that

G :=
{

(φ1, . . . , φn) | φj : X → [0, 1], j = 1, n;
n∑
j=1

φj(x) = 1
}
,

min
j≤k

inf
θ∈Θj

Eθ(φ∗j (X)) = max
φ∈G

,

Eθ(φ∗k+1(X)) ≥ 1− bθ, (∀) θ ∈ Θk+1.

Section 7 will be devoted to discussing these examples in detail. But, it
must be pointed up, Program P can solve other different models, too.

2. DEFINITIONS

– (X,X, µ), a measurable space (X,X) with the σ-field X and a σ-finite
measure µ;

– two bilinear forms, 〈· , ·〉 and [· , ·], unidimensional and multiple, respec-
tively defined by:

〈· , ·〉 : L1(X,µ)× L∞(X,µ) → R, 〈h, ψ〉 :=
∫
X ψ(x)h(x)dµ(x),

[· , ·] : [L1(X,µ)]n × [L∞(X,µ)]n → R, [f, φ] :=
n∑
j=1

∫
X φj(x)fj(x)dµ(x);
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– two disjoint sets of indices (parameters or labels) Θo and Θr: optimality
parameter space Θo and restriction parameter space Θr, such that the σ-fields
(Θo,Lo) and (Θr,Lr) include the singletons and Θ := Θo ×Θr, L := Lo⊗Lr;

– two given sets of functions indexed by Θo and Θr; if s ∈ {o, r},

S(Θs) :=
{
fθ := (fθ1 , f

θ
2 , . . . , f

θ
n) | fθj : X → R, θ ∈ Θs,

f
(·)
j (·) X⊗ Ls-measurable, fθj (·) ∈ L1(X,µ); j = 1, . . . , n

}
;

– the set of randomized multiple-decision functions F

F :=
{
φ = (φ1, . . . , φn) ∈ [L∞(X,µ)]n |(1)
n∑
j=1

φj(x) = 1, φj(x) ≥ 0, j = 1, n
}
, n ≥ 2;

– the set of feasible decision functions Fr, Fr ⊂ F :

(2) Fr :=
{
φ = (φ1, . . . , φn) ∈ F | [fθ, φ] ≤ 0, (∀) θ ∈ Θr

}
;

– M(Θr), M+(Θr) and M ′
+(Θr) are the sets of finite measures, finite

positive measures and finite positive measures with finite support on σ-field
(Θr,Lr);

– P (Θo) and P ′(Θo) are the sets of probability measures and probability
measures with finite support on σ-field (Θo,Lo);

– Υ := M+(Θr)× P (Θo), Υ′ := M ′
+(Θr)× P ′(Θo).

3. STATEMENT AND SOLUTION OF PROGRAM P

Program P. Find the value V (P ) defined by

(3) V (P ) := inf
φ∈Fr

sup
θ∈Θo

[fθ, φ]

if the following conditions are satisfied:
C1) Fr 6= ∅;
C2) there is a dominating function τ ∈ L1(X,µ) such that

|fθj (·)| < τ(·), µ-a.e., (∀) θ ∈ Θs, s ∈ {o, r}; j = 1, . . . , n.

We say that φ∗ ∈ Fr is optimal solution of P if inf is attained in φ∗.
In order to solve program P , a Lagrangian function with respect to the

multipliers set M+(Θr) will be defined for the specified function sets S(Θo)
and S(Θr)

L : F ×M+(Θr) → R, L(φ, λ) := sup
θ∈Θo

[fθ, φ] +
∫

Θr

[fθ, φ]dλ(θ).
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Below, L will be replaced by function W (· , ·) : F × Υ → R, which is more
appropriate for the subsequent application of the minimax theorem

(4) W (φ, (λ, π)) :=
∫

Θo

[fθ, φ] dπ(θ) +
∫

Θr

[fθ, φ] dλ(θ).

Lemma 1. If conditions C1 and C2 are verified then [fθ, φ] and V (P )
are finite (where fθ ∈ S(Θs), s ∈ {o, r}, φ ∈ Fr).

Proof. The result is evident

|[fθ, φ]| =
∣∣∣∣ n∑
j=1

∫
X
φj(x)fθj (x)dµ(x)

∣∣∣∣ ≤ n∑
j=1

∫
X
φj(x)

∣∣fθj (x)∣∣dµ(x) <

<
n∑
j=1

∫
X
φj(x)τ(x)dµ(x) =

∫
X
τ(x)dµ(x) <∞. �

Theorem 2. Program P has an optimal solution, φ∗ ∈ Fr. Moreover,
the following relations are verified:

(5) V (P ) = sup
τ∈Υ

inf
φ∈F

W (φ, τ) = inf
φ∈F

sup
τ∈Υ

W (φ, τ) = sup
τ∈Υ

W (φ∗, τ).

If φ∗ ∈ F verifies (5) then φ∗ ∈ Fr.

Proof. Theorem 2 is a minimax approach of a common infinite dimen-
sional linear programming. A rather comprehensive proof of the theorem will
be given in Appendix. �

Theorem 3. Let consider Problem P described by relation (3).
a) V (P ) is finite and the infimum is attained, namely there exists optimal

solution φ∗ ∈ Fr, such that

(6) V (P ) := inf
φ∈Fr

sup
θ∈Θo

[fθ, φ] = sup
θ∈Θo

[fθ, φ∗].

b) Let define for specified (λ, π) ∈ Υ, the decision criterion dj

(7) dj(x, λ, π) :=
∫

Θr

fθj (x)dλ(θ) +
∫

Θo

fθj (x)dπ(θ), 1 ≤ j ≤ n.

Then, V (P ) verifies the equality

(8) V (P ) = sup
(λ,π)∈Υ

∫
X

min
j≤n

dj(x, λ, π)dµ(x).

c) Relation (8) remains true even if sup is taken in the set of finite
support measures,Υ′ := M ′

+(Θr)× P ′(Θo) ⊂ Υ.
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d) There exists a sequence ((λm, πm))m∈N , (λm, πm) ∈ Υ′, which is the
solution of the programming problem

(9) sup
(λ,π)∈Υ

∫
X

min
j≤n

dj(x, λ, π)dµ(x)

namely

(10) sup
(λ,π)∈Υ

∫
X

min
j≤n

dj(x, λ, π)dµ(x) = lim
m

∫
X

min
j≤n

dj(x, λm, πm)dµ(x).

e) If φ∗ is optimal solution of P and if ((λm, πm))m∈N ⊂ Υ′ is solution
of (10), then the following relations are verified for 1 ≤ j ≤ n,

(11) φ∗j (x)limm

[
dj(x, λm, πm)−min

k≤n
dk(x, λm, πm)

]
= 0, µ-a.e.;

(12) lim
m
λm

({
θ ∈ Θr | [fθ, φ∗] 6= 0

})
= 0;

(13) lim
m
πm

({
θ ∈ Θ0 | [fθ, φ∗] 6= sup

θ0∈Θo

[fθ0 , φ∗]
})

= 0.

f) A sufficient condition for feasible solution φ∗ ∈ Fr to be optimal
for P is the existence of sequence ((λm, πm))m∈N ⊂ Υ such that the set
{
∫
Θr
fθj (·) dλm | m ∈ N ; j = 1, n} is dominated in L1(X,µ) and conditions

(11), (12), (13) are verified.

Proof. The results will be obtained in twelve steps.

S1. Here and further in the proof we shall use Theorem 2, hence there
exist φ∗ ∈ Fr which verifies (5).

Taking into account (5) and (4) we have:

V (P ) = sup
τ∈Υ

W (φ∗, τ) = sup
(λ,π)∈Υ

(∫
Θr

[fθ, φ∗] dλ(θ) +
∫

Θo

[fθ, φ∗] dπ(θ)
)
≤

≤ sup
π∈P (Θo)

∫
Θo

[fθ, φ∗] dπ(θ) = sup
(λ=0,π)∈Υ

W (φ∗, (0, π)).

(The inequality appears due to [fθ, φ∗] ≤ 0, ∀θ ∈ Θr.)
But, because of sup definition, the above “≤” must be “=”, hence (taking

also into account (5)) φ∗ ∈ Fr is an optimal solution of Problem P and the
second equality of (6) is true.

S2. Applying Fubini Theorem and using definition (7), we obtain an
equivalent relation for W

W (φ, (λ, π)) :=
∫

Θr

[fθ, φ] dλ+
∫

Θo

[fθ, φ] dπ =



7 Minimax approach to some constraint statistical decision models 241

=
∫
X

n∑
j=1

φj(x)
[ ∫

Θr

fθj (x) dλ(θ) +
∫

Θo

fθj (x) dπ(θ)
]
dµ(x).

We proved

(14) W (φ, (λ, π)) =
∫
X

n∑
j=1

φj(x)dj(x, λ, π)dµ(x).

S3. To obtain the minimum of W in F for specified (λ, π) ∈ Υ, it is
necessary and sufficient to define φ ∈ F by:

1) φk(x) = 0 if dk(x, λ, π) > min{dj(x, λ, π) | j = 1, n}, µ-a.e.;
2)
∑
k∈K

φk(x) = 1 where K is the subset of integers k, 1 ≤ k ≤ n, such that

dk(x, λ, π) = min{dj(x, λ, π) | j = 1, n}.
Hence, for specified (λ, π) ∈ Υ inf value of W (φ, (λ, π)) in F is attained and
we have

(15) inf
φ∈F

W (φ, (λ, π)) =
∫
X

min
j≤n

dj(x, λ, π)dµ(x).

Equality (8) results on account of (15) and Theorem 2.

S4. For statement c), see on WEB the excellent paper of J.B.G. Frenk,
P. Kas, G. Kassay (2004), especially inequalities (25) and related explanations
about relations between the different minimax results.

S5. Statement d) derives from (7) and c), taking into account the sup
definition and the finiteness of V (P ).

S6. Because of statement c) and definition of sup in first part of (5), a se-
quence (τm)m∈N := ((λm, πm))m∈N ⊂ Υ′ exists, such that V (P ) = lim

m

[
inf
φ∈F

W

(φ, τm)
]
. Using (15), (14) and φmj defined depending on (λm, πm) by 1) and

2) from S3, we have

V (P ) = lim
m

[
inf
φ∈F

W (φ, (λm, πm))
]

= lim
m

∫
X

min
j≤n

dj(x, λm, πm)dµ(x) =

= lim
m

∫
X

n∑
j=1

φmj (x)dj(x, λm, πm)dµ(x) ≤

≤ lim inf
m

∫
X

n∑
j=1

φ∗j (x)dj(x, λm, πm)dµ(x) = lim inf
m

W (φ∗, (λm, πm)).

Hence (taking into account the last term from (5)), we proved supW (φ∗,
τ) = V (P ) ≤ lim inf

m
W (φ∗, (λm, πm)). But, obvious, ‘≤’ must be ‘=’. More-

over, a subsequence of ((λm, πm))m∈N exists, such that “lim inf” should be
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equivalent with “lim”. We shall use that subsequence, without changing no-
tation.

S7. Using the last equalities from S6, finiteness of V (P ) and
n∑
j=1

φ∗j = 1,

we have in turn

(i) lim
m

∫
X

[ n∑
j=1

φ∗j (x)dj(x, λm, πm)−min
j≤n

dj(x, λm, πm)
]
dµ(x) = 0.

lim
m

n∑
j=1

∫
X

{
φ∗j (x)

[
dj(x, λm, πm)−min

k≤n
dk(x, λm, πm)

]}
dµ(x) = 0.

All integrands in the above sum are non-negative and therefore each integral
must be zero. Namely, for j = 1, n,

(ii) lim
m

∫
X
φ∗j (x)

[
dj(x, λm, πm)−min

k≤n
dk(x, λm, πm)

]
dµ(x) = 0.

As a consequence, there exists a subsequence of ((λm, πm))m∈N (but we did
not change notation) such that, for j = 1, n,

(16) φ∗j (x) lim
m

[
dj(x, λm, πm)−min

k≤n
dk(x, λm, πm)

]
= 0, µ-a.e.

(Taking into account that convergence in mean implies convergence in mea-
sure, the subsequence can be sequentially selected-first, a subsequence verify-
ing (16) is extracted for j = 1, then, from the extracted subsequence, for j = 2
and so on.) We obtained (11).

S8. Let consider the sequence ((λm, πm))m∈N from S6. Using the last
equalities from S6 and (4) we have

V (P ) = lim
m
W
(
φ∗, (λm, πm)

)
:= lim

m

∫
Θo

[
fθ, φ∗

]
dπm(θ)+

∫
Θr

[
fθ, φ∗

]
dλm(θ).

Let single out a subsequence of ((λm, πm))m∈N (but we don’t change
the sequence notation) such that the two terms of the above equality are
convergent (because the first integral is bounded and V (P ) is finite, such
subsequence exists).

Owing to φ∗ ∈ Fr, the integrand of second integral is not positive, hence

V (P ) = sup
τ∈Υ

W (φ∗, τ) ≤ lim
m

∫
Θo

[fθ, φ∗]dπm(θ).

The sup definition implies that the above “≤” must be “=”, hence

(iii) lim
m

∫
Θr

[fθ, φ∗] dλm(θ) = 0
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and

(iv) lim
m

∫
Θ0

(
sup
θ0∈Θo

[fθ0 , φ∗]− [fθ, φ∗]
)
dπm(θ) = 0.

S9. Let suppose (12) is false (i.e., no limit or the limit is not zero)
and moreover, that there is not any subsequence of ((λm, πm))m∈N which
verifies (12). The meaning of “not equal” in (12) is “less” (indeed, because
of φ∗ ∈ Fr, we have (fθ, φ∗) ≤ 0). Then (irrespective of any assumption on
the existence of limit in (12)) there exist ε > 0, L > 0 and a subsequence of
((λm, πm))m∈N (but we don’t change notation) such that if A is defined by
A := {θ ∈ Θr | (fθ, φ∗) < −ε}, then lim

m
λm(A) = L. Taking into account (iii)

we obtain a contradiction

0=lim
m

∫
Θr

[fθ, φ∗] dλm(θ)≤ lim
m

∫
A
[fθ, φ∗] dλm(θ)<−ε lim

m

∫
A
dλm(θ)=−εL<0.

As a consequence, (12) must be true. Similarly, if we suppose that (13) is false
we obtain a contradiction (using (iv) which has non-positive integrand). We
completely proved e).

S10. We shall prove that (12) implies relation (iii) and (13) implies (iv).
Let suppose (iii) is not true. Hence (∃) ε > 0 such that (∀) m ∈ N ,

(∃) km > m such that |Ikm | > ε, where we defined Ik :=
∫
Θr

[fθ, φ∗] dλk(θ).
Thus, because [fθ, φ∗] ≤ 0, there exists a subsequence of (Im)m∈N (but we
don’t change notation) such that Im < −ε, (∀) m ∈ N.

Moreover (see Lemma 1), (∃) M > 0 such that −M < [fθ, φ∗] ≤ 0.
If we define A :=

{
θ ∈ Θr | [fθ, φ∗] < 0

}
, we have

−ε > Im =
∫

Θr

[fθ, φ∗] dλm(θ) =
∫
A
[fθ, φ∗] dλm(θ) > −Mλm(A).

We obtained for all m ∈ N , λm
({
θ ∈ Θr | [fθ, φ∗] < 0

})
> ε/M , hence

(12) is not true.
Similarly, one can prove that relation (13) implies (iv).

S11. We shall prove that relation (11) implies relation (i). Because of the
dominating hypothesis of f), {dj( · , λm, πm) | m ∈ N , j = 1, n} is dominated
and therefore relations (16) imply (ii). Adding relations (ii) we obtain (i).

S12. We shall prove f). Feasible solution φ∗ verifying (11), (12), (13)
also verifies (i), (iii), (iv). We define V := sup

θ∈Θo

[fθ, φ∗].
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Subtracting (iii) from (iv), changing the integration order, using relations
(7), (i) and then (8) we get

V = lim
m

(∫
Θr

[fθ, φ∗]dλm(θ) +
∫

Θ0

[fθ, φ∗]dπm(θ)
)

=

= lim
m

n∑
j=1

∫
X
φ∗j (x)

[ ∫
Θr

fθj (x)dλm(θ) +
∫

Θo

fθj (x)dπm(θ)
]
dµ(x) =

= lim
m

n∑
j=1

∫
X
φ∗j (x)dj(x, λm, πm)dµ(x) = lim

m

∫
X

min
j≤n

dj(x, λm, πm)]dµ(x) ≤

≤ sup
(λ,π)∈Υ

∫
X

min
j≤n

dj(x, λ, π)]dµ(x) = V (P ).

Hence we proved V ≤ V (P ).
Conversely, V = sup

θ∈Θo

[fθ, φ∗] ≥ inf
φ∈Fr

sup
θ∈Θo

[fθ, φ] = V (P ).

Therefore, φ∗ is optimal solution of Problem P . �

Corollary 4. A sufficient condition for feasible solution φ∗ ∈ Fr to be
optimal for P is the existence of λ ∈ M+(Θr) and π ∈ P (Θo) such that the
following conditions are verified

(11′) φ∗j (x)
[
dj(x, λ, π)−min

k≤n
dk(x, λ, π)

]
= 0; µ-a.e.

(12′) λ
({
θ ∈ Θr | [fθ, φ∗] 6= 0

})
= 0,

(13′) π

({
θ ∈ Θ0 | [fθ, φ∗] 6= sup

σ∈Θo

[fσ, φ∗]
})

= 0,

where dj(x, λ, π), j = 1, . . . , n, were defined by (7).

Proof. The statement results directly from Theorem 3 f) under hypothe-
sis that sequence ((λm, πm))m∈N is independent of m, namely λm = λ and
πm = π for all m ∈ N. �

4. A MORE GENERAL FORM OF PROGRAM P

Below an application of Program P will be considered.

Program PG. Find value V (PG) defined by

(17)
V (PG) := inf

φ∈Gr

sup
θ∈Θo

([gθ, φ]− aθ),

Gr := {φ ∈ F | [gθ, φ] ≤ aθ, (∀) θ ∈ Θr},
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if the following conditions are satisfied:
C1) Gr 6= ∅;
C2) there is a dominating function τ ∈ L1(X,µ):

|gθj (·)| ≤ τ(·), µ-a.e., (∀) θ ∈ Θo ∪Θr; j = 1, . . . , n.

C3) a(·) is (Θ,L)-measurable and there exists a positive real number
A ∈ R such that |aθ| ≤ A, (∀) θ ∈ Θo ∪Θr.

Theorem 5. a) To solve Program PG it is sufficient to solve Program P
defined for the following choice of fθj ’s, j = 1, . . . , n,

(18) fθj (x) := gθj (x) − aθρ(x), (∀) x ∈ X, (∀) θ ∈ Θo ∪Θr,

where ρ ∈ L1(X,µ) is any probability µ-density function (optimal solution of
PG is not depending on the choice of ρ).

b) V (PG) is finite and verify the equality

V (PG) = sup
(λ,π)∈Υ

{∫
X

min
j≤n

[ ∫
Θr

gθj (x) dλ(θ) +
∫

Θo

gθj (x)dπ(θ)
]
dµ(x)−

−
∫

Θr

aθ dλ(θ)−
∫

Θo

aθdπ(θ)
}
.

c) There exists φ∗ ∈ Gr, such that infimum is attained in (17). Moreover,
there exists a sequence ((λm, πm))m∈N ⊂ Υ′ such that

(19) lim
m
λm

({
θ ∈ Θr | [gθ, φ∗] 6= aθ

})
= 0,

(20) lim
m
πm

({
θ ∈ Θ0 | [gθ, φ∗]− aθ 6= V (P )

})
= 0,

(21) φ∗j (x) lim
m

[
dj(x, λm, πm)−min

k≤n
dk(x, λm, πm)

]
= 0, µ-a.e.,

where

(22) dj(x, λ, π) :=
∫

Θr

gθj (x) dλ(θ) +
∫

Θo

gθj (x) dπ(θ), 1 ≤ j ≤ n.

Proof. S1. The following equalities are evident

[gθ, φ]− aθ =
n∑
j=1

∫
X
φj(x)gθj (x) dµ(x)− aθ

∫
X

n∑
j=1

φj(x) ρ(x) dµ(x) =

=
n∑
j=1

∫
X
φj(x)(gθj (x)− aθρ(x)) dµ(x) = [gθ − aθρ, φ].
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Because of conditions C2 and C3 of Program PG, there is a dominating
function τ ′ ∈ L1(X,µ) for all fθj (·) := gθj (·) − aθρ(·). Hence PG is a P -type
program and Theorem 3 is applicable.

S2. Using (22), the decision criterion of PG is

dPGj (x, λ, π) =
∫

Θr

(gθj (x)− aθρ(x)) dλ(θ) +
∫

Θo

(gθj (x)− aθρ(x)) dπ(θ) =

= dj(x, λ, π)− ρ(x)
[ ∫

Θr

aθ dλ(θ) +
∫

Θo

aθ dπ(θ)
]
.

S3. b) Direct computation, using S2, (8) and (18) implies

V (PG) := sup
(λ,π)∈Υ

∫
X

min
j≤n

dPGj (x, λ, π)dµ(x)= sup
(λ,π)∈Υ

{∫
X

min
j≤n

dj(x, λ, π)dµ(x)−

−
∫
X
ρ(x)dµ(x)

[ ∫
Θr

aθ dλ(θ) +
∫

Θo

aθ dπ(θ)
]}

=

= sup
(λ,π)∈Υ

{∫
X

min
j≤n

dj(x, λ, π) dµ(x)−
∫

Θr

aθ dλ(θ)−
∫

Θo

aθdπ(θ)
}
.

S4. c) All statements derive from Theorem 3. Equalities (19) and (20)
derive from (12) and (13). Each decision function dPGj (·) is depending on
a term which contains ρ(·) and all aθ, but this term is not depending on j.
Therefore, (11) and (7) can be replaced by (21) and (22). �

5. FINITE-INDEX-SET CASE OF PROGRAM P

Hereafter we consider the finite case of Program P . In addition, two type
of restrictions (inequalities and equalities) will be allowed.

Program P ′. Find value V (P ′) defined for F ′
r 6= ∅ by

(23) V (P ′) := inf
φ∈F ′

r

sup
θ∈Θ′

o

[fθ, φ],

F ′
r :=

{
φ = (φ1, . . . , φn) ∈ F | [fθ, φ] ≤ 0,(24)

(∀) θ ∈ Θ′
r1; [fθ, φ] = 0, (∀) θ ∈ Θ′

r2

}
,

where card(Θ′
o) = so < ∞; card(Θ′

r1) = s1 < ∞; card(Θ′
r2) = s2 < ∞;

Θ′
r1 ∩Θ′

r2 = ∅; Θ′
o ∩ (Θ′

r1 ∪Θ′
r2) = ∅.

To avoid unnecessary complication, all superfluous restrictions were ex-
cluded from F ′

r. Namely: if for given θ inequality [fθ, φ] ≤ 0 is true for all
φ ∈ F then θ /∈ Θ′

r1 and if [fθ, φ] = 0 is true for all φ ∈ F then θ /∈ Θ′
r2.
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For the sake of simplicity we may give natural numbers as labels for θ’s,
namely,

Θ′
r1 := {1, 2, . . . , s1}; Θ′

r2 := {s1 + 1, s1 + 2, . . . , s1 + s2};

Θ′
o := {s1 + s2 + 1, s1 + s2 + 2, . . . , s1 + s2 + so}.

Theorem 6. Let consider: Program P ′, the sets

Λ := {λ ∈ [0,∞)s1 ×Rs2 | λθ ≥ 0, ∀θ ∈ Θ′
r1; λ

θ ∈ R, ∀θ ∈ Θ′
r2},

Π :=
{
π ∈ [0, 1]so |

∑
θ∈Θ′

o

πθ = 1
}
, Γ := Λ×Π ⊂ Rs1+s2+so

and the decision criterion d′j : X × Λ×Π → R, j = 1, . . . , n,

(25) d′j(x, λ, π) :=
∑
θ∈Θ′

r1

λθfθj (x) +
∑
θ∈Θ′

r2

λθfθj (x) +
∑
θ∈Θ′

o

πθfθj (x).

a) There exists φ∗ ∈ F ′
r such that inf value of P ′ is attained.

b) V (P ′) is finite and verifies the equality

(26) V (P ′) = sup
(λ,π)∈Γ

∫
X

min
j≤n

d′j(x, λ, π)dµ(x).

c) There exists a sequence ((λm, πm))m∈N , (λm, πm) ∈ Γ such that V (P ′)
verifies the equality
(27)

V (P ′) = lim
m

∫
X

min
j≤n

[ ∑
θ∈Θ′

r1

λθmf
θ
j (x) +

∑
θ∈Θ′

r2

λθmf
θ
j (x) +

∑
θ∈Θ′

0

πθmf
θ
j (x)

]
dµ(x).

Moreover, φ∗ verifies the following relations:

(28) φ∗j (x) 6= 0 ⇒ lim
m

[
d′j(x, λm, πm)−min

k≤n
d′k(x, λm, πm)

]
= 0 µ-a.e.;

(29) (∀) θ ∈ Θ′
r1 : [fθ, φ∗] 6= 0 ⇒ lim

m
λθm = 0;

(30) (∀) θ ∈ Θ′
o : [fθ, φ∗] 6= V (P ′) ⇒ lim

m
πθm = 0.

Proof. For each θ ∈ Θ′
r2, restriction [fθ, φ] = 0 will be replaced by

two inequalities: [fθ, φ] ≤ 0 and [−fθ, φ] ≤ 0. Consequently, Theorem 3 is
applicable for Θo = Θ′

o and Θr = Θ′
r1 ∪ Θ+

r2 ∪ Θ−
r2, where index sets Θ+

r2 and
Θ−
r2 correspond to restriction sets {[fθ, φ] ≤ 0 | θ ∈ Θ′

r2} and {[−fθ, φ] ≤
0 | θ ∈ Θ′

r2}, respectively. All integrals on parameter spaces mentioned in
Theorem 3 become sums.
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Taking into consideration Theorem 3, for each index θ ∈ Θ′
r2 we have

two positive numbers, λθ+ and λθ−. The coefficient λθ+ multiplies fθj (x) and
the coefficient λθ− multiplies −fθj (x). Consequently, if θ ∈ Θ′

r2, f
θ
j (·) has the

coefficient λθ := λθ+ − λθ− in a type-(7) expression, for j = 1, 2, . . . , n.
Thus, the definition of sequence ((λm, πm))m∈N ⊂ Rs1+s2 ×Rso comes

from the proof of Theorem 3 (step S6) and verifies the relation V (P ′) =
lim
m

[
inf
φ∈F

W (φ, (λm, πm))
]
.

Relations (25) and (26) derive now directly from (7) and (8), respectively.
Relation (27) is a consequence of sup-definition in (26). Relation (28) derives
from (11). Relations (29) and (30) derive from (12) and (13), after simple
calculus. �

Theorem 7. a) Let consider the optimal decision function φ∗ ∈ F ′
r of

Program P ′ and the set T ⊂ Rs1+s2 :

T :=
{(

[f1, φ], . . . , [fs1+s2 , φ]
)
| φ ∈ F

}
.

If (0, 0, . . . , 0) ∈ Rs1+s2 is an interior point of T (relative to Rs1+s2),
then there exist λ ∈ Λ and π ∈ Π such that the following relations are verified:

(31) V (P ′) =
∫
X

min
j≤n

d′j(x, λ, π)dµ(x),

(32) d′j(x, λ, π) > min
k≤n

d′k(x, λ, π) ⇒ φ∗j (x) = 0; µ-a.e.,

(33) (∀) θ ∈ Θ′
r1 : [fθ, φ∗] 6= 0 ⇒ λθ = 0,

(34) (∀) θ ∈ Θ′
o : [fθ, φ∗] 6= min

σ∈Θ′
o

[fσ, φ∗] ⇒ πθ = 0.

b) A sufficient condition for a feasible solution φ∗ ∈ F ′
r to be optimal

for P ′ is existence of λ ∈ Λ and π ∈ Π such that the relations (32)–(34)
are verified.

Proof. S1. We shall apply Theorem 6. Let φ∗ ∈ F ′
r be the optimal solution

of P ′ and ((λm, πm))m∈N ⊂ Rs1+s2 ×Rso be the sequence which verifies the
relations (27)–(30) of Theorem 6c.

We must mention that below, in order to avoid unnecessary editing com-
plications, by ((λm, πm))m∈N we refer to the above mentioned sequence, or a
specified subsequence of this sequence.

Two cases would be possible:
i) sequence ((λm, πm))m∈N has a convergent subsequence;
ii) sequence ((λm, πm))m∈N does not have any convergent subsequence.
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S2. Suppose case i) is true, hence ((λm, πm))m∈N is convergent to (or
has a convergent subsequence to) (λ, π) ∈ Rs1+s2 ×Rso . Relations (32), (33)
and (34) derive from (28), (29) and (30), respectively. Relation (31) derives
from (27) and Lebesgue Theorem, considering that the set {d′j(· , λm, πm) |
j = 1, 2, . . . , n; m ∈ N} is bounded in L1.

S3. We shall show that case ii) is not our case.
Let suppose case ii) is true, hence sequence ((λm, πm))m∈N does not

have any subsequence which is convergent on all its components. Then, a
subsequence exists – and will be selected – such that all its components have
limit (finite or infinite). Definitely, lim

m
πθm = πθ ∈ [0, 1] for θ ∈ Θ′

o and there

exists a non-empty index subset L 6= ∅, L ⊂ Θ′
r1 ∪ Θ′

r2 such that lim
m
λθm ∈

{−∞,∞} for θ ∈ L; lim
m
λθm = λθ /∈ {−∞,∞} for θ ∈ Θ′

r1 ∪Θ′
r2 \ L.

S4. An index θ ∈ L and a subsequence of the sequence from S3 will be
selected such that

λθm 6= 0, λθm/λ
θ
m ∈ [−1, 1]; ∀m ∈ N, ∀θ ∈ Θ′

r1 ∪Θ′
r2.

(Such a subsequence exists and could be sequentially selected because for any
two indices θ, σ ∈ Θ′

r1∪Θ′
r2 at least one of the inequalities |λθm| ≥ |λσm|, |λθm| ≤

|λσm| is true for an infinite number of m ∈ N .)

S5. Now, a subsequence of the sequence from S4 will be selected such
that the following limits exist

lim
m

(πθm/λ
θ
m) = 0, ∀θ ∈ Θ′

o; lim
m

(λθm/λ
θ
m) = ηθ, ηθ ∈ [−1, 1], ∀θ ∈ Θ′

r1 ∪Θ′
r2.

S6. Let choose j0 and suppose φ∗j0(x) 6= 0.
Relation (28) implies lim

m
βm(x) = 0, where

βm(x) :=
s1+s2∑
θ=1

fθj0(x) λ
θ
m+

∑
θ∈Θ′

o

fθj0(x)π
θ
m−min

j≤n

[
s1+s2∑
θ=1

fθj (x)λ
θ
m+

∑
θ∈Θ′

o

fθj (x)π
θ
m

]
.

Let consider an index k such that the minimum from the above relation
is attained in j = k for an infinite number of m ∈ N (at least one such index
k exists). For this subsequence we have

0 = lim
m
βm(x) = lim

m

(
s1+s2∑
θ=1

[
fθj0(x)− fθk (x)

]
λθm+

∑
θ∈Θ′

o

[
fθj0(x)− fθk (x)

]
πθm

)
=

=
s1+s2∑
θ=1,θ /∈L

[
fθj0(x)− fθk (x)

]
λθ+

∑
θ∈Θ′

o

[
fθj0(x)− fθk (x)

]
πθ+
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+ lim |λθm|

(∑
θ∈L

[
fθj0(x)− fθk (x)

]
λθm/|λθm|

)
.

Hence (because of S5), we must have

(35)
∑
θ∈L

[
fθj0(x)− fθk (x)

]
ηθ = 0.

S7. Taking into account the definition of index k and of subsequence
selected in S6, we have for each j, j = 1, 2, . . . , n; m ∈ N ,

s1+s2∑
θ=1

fθj (x)λ
θ
m +

∑
θ∈Θ′

o

fθj (x)π
θ
m ≥

s1+s2∑
θ=1

fθk (x)λ
θ
m +

∑
θ∈Θ′

o

fθk (x)π
θ
m

and therefore

|λθm|

(∑
θ∈L

[
fθj (x)− fθk (x)

]
λθm/|λθm|

)
≥

≥ −
s1+s2∑

θ=1, θ /∈L

[
fθj (x)− fθk (x)

]
λθm−

∑
θ∈Θ′

o

[
fθj (x)− fθk (x)

]
πθm.

Because all sums from above are convergent and lim
m
|λθm| = ∞, it must

hold ∑
θ∈L

[
fθj (x)− fθk (x)

]
ηθ ≥ 0.

S8. Computing the difference of above inequality and (35) we obtain

(36)
∑
θ∈L

[
fθj (x)− fθj0(x)

]
ηθ ≥ 0, j = 1, 2, . . . , n.

Relation (36) depends neither on choice of k nor on definition of subse-
quence from S6. Hence, we obtain a necessary (but not sufficient!) condition.
Definitely, for case stated in S3, there exists L ⊂ Θ′

r1 ∪Θ′
r2, L 6= ∅ and a set

of constants {ηθ | θ ∈ L} such that

(37) φ∗j0(x) 6= 0 ⇒
∑
θ∈L

ηθfθj0(x) = min
j≤n

∑
θ∈L

ηθfθj (x).

(Of course, ηθ = 0 could appear for some but not for all θ ∈ L because we
have ηθ = 1.)

S9. Using {ηθ | θ ∈ L} we define Z : F → R,

Z(φ) :=
∫
X

n∑
j=1

φj(x)
∑
θ∈L

ηθfθj (x)dµ(x).
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Relation (37) implies

(38) Z(φ∗) ≤ Z(φ), ∀φ ∈ F.
On the other hand (using the definition of the subsequence from S3 and (29)),
the implication ηθ 6= 0 ⇒ [gθ, φ∗] = 0 is true for θ ∈ L. Hence, we have

ηθ
n∑
j=1

∫
X
φ∗j (x)f

θ
j (x)dµ(x) = 0, ∀θ ∈ L.

Adding all above relations we obtain Z(φ∗) = 0. Thus

(39) 0 ≤ Z(φ), ∀φ ∈ F.

S10. Because (0, 0, . . . , 0) ∈ Rs1+s2 is an interior point of T , there exists
φ0 ∈ F such that, for each θ ∈ L, if ηθ 6= 0 then [fθ, φ0] 6= 0 and, more,
sgn([fθ, φ0]) = −sgn(ηθ). Namely, we can select φ0 ∈ F such that for all θ ∈
L : ηθ[fθ, φ0] ≤ 0 and at least one inequality is strict (because ηθ = 1). Adding
these inequalities for all θ ∈ L, we obtain Z(φ0) < 0, but this contradicts (39).
The conclusion is that case ii), can’t appear.

S11. Proof of sufficiency.
Relations (32), (33) and (34) are equivalent with

(40) φ∗j (x)
(
d′j(x, λ, π)−min

k≤n
d′k(x, λ, π)

)
= 0; µ-a.e.,

(41) (∀) θ ∈ Θ′
r1 : [fθ, φ∗]λθ = 0,

(42) (∀) θ ∈ Θ′
o :
(
[fθ, φ∗]− V

)
πθ = 0,

where

(43) V := min
θ∈Θ′

o

[fθ, φ∗].

Adding relations (42) for all θ ∈ Θ′
o, taking into account that π is a

probability measure, adding relations (41) for all θ ∈ Θ′
r1 and for all θ ∈ Θ′

r2,

considering in turn (25), (40), equality
n∑
j=1

φj(x) = 1 and (26) we obtain

V =
∑
θ∈Θ′

0

πθ[fθ, φ∗] =
∑
θ∈Θ′

0

πθ[fθ, φ∗] +
∑
θ∈Θ′

1

λθ[fθ, φ∗] +
∑
θ∈Θ′

2

λθ[fθ, φ∗]=

=
n∑
j=1

∫
X
φ∗j (x)d

′
j(x, λ, π)dµ(x) =

∫
X

min
j≤n

d′j(x, λ, π)dµ(x) ≤

≤ sup
(λ,π)∈Υ′

∫
X

min
j≤n

d′j(x, λ, π)dµ(x) = V (P ′).
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Finally, V ≤ V (P ′), (43) and (23) imply

V (P ′) ≥ V = sup
θ∈Θ′

o

[fθ, φ∗] ≥ inf
φ∈F ′

r

sup
θ∈Θ′

o

[fθ, φ] = V (P ′).

We obtained sup
θ∈Θ′

o

[f θ, φ∗] = V (P ′). �

Theorem 7 gives necessary and sufficient condition of optimality for Pro-
blem P ′ for interior points of T , only. The case of boundary points of T
were exhaustively solved for Fundamental lemma of Neyman and Pearson (in
formulation from Example 1) by Dantzig and Wald ([3]).

6. APPLICATIONS: TWO SPECIAL CASES
OF OPTIMALITY CONDITION

Two particular cases of the definition of condition of optimality will be
presented further on. More general and complex approaches could be consi-
dered by explicitly singling out a loss function definition. Here the loss function
concept was avoided. But one must keep in mind that the fθ’s and gθ’s of our
present approach could depend on a loss function and on certain appropriate
probability density functions.

To obtain more explicit optimality conditions, n non-void and non-over-
lapping sets Θoj , 1 ≤ j ≤ n, one for each decision alternative, have to be
singled out, in order to define a partition of optimality parameter space. Also,
the corresponding function sets {fθj : X → R | (∀) θ ∈ Θoj} have to be
specified, 1 ≤ j ≤ n.

The restriction parameter space Θr and the corresponding set Fr of fea-
sible multiple decisions will not be modified.

Program P1. Find the value V (P1):

(44) V (P1) := inf
φ∈Fr

max
j≤k

sup
θ∈Θoj

∫
X
φj(x)gθj (x)dµ(x),

where 1 ≤ k ≤ n; the set of feasible decision functions (defined by (2)) is
non-void, Fr 6= ∅; there exists a dominating function τ ∈ L1(X,µ) for all
functions gθj ’s from (44) and all functions fθj ’s from Fr.

Proposition 8. The Program P1 is a particular case of Program P .
All statements of Theorem 3 hold if decision criterion dj’s defined by (7) are
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replaced by

dj(x, λ, π) :=
∫

Θr

fθj (x)dλ(θ) +
∫

Θoj

gθj (x)dπ(θ), 1 ≤ j ≤ k;

dj(x, λ, π) :=
∫

Θr

fθj (x)dλ(θ), k + 1 ≤ j ≤ n.

(7′)

(Of course, if k = n the second line of (7′) disappears.)

Proof. It is enough to define Θo :=
⋃
j≤n

Θoj and to make the following

choice for function family S(Θo) involved in the optimality condition of P :

fθj := gθj if 1 ≤ j ≤ k and θ ∈ Θoj ,

fθj := 0 if 1 ≤ j ≤ k and θ ∈ Θo \Θoj ,

fθj := 0 if k + 1 ≤ j ≤ n and θ ∈ Θo.

Using above definitions, relation (3) has structure (44). �

Program P2. Find value V (P2) :

(45) V (P2) := inf
φ∈Fr

k∑
j=1

sup
θ∈Θoj

∫
X
φj(x)gθj (x)dµ(x),

where 1 ≤ k ≤ n; the set of feasible decision functions is non-void, Fr 6= ∅;
there exists a dominating function τ ∈ L1(X,µ) for all functions gθj ’s from
(44) and all functions fθj ’s from Fr.

Proposition 9. Program P2 is a particular case of Program P .

Proof. It is enough to define Θo depending on Θo1,Θo2, . . . ,Θon and to
make the following choice for the family of functions involved in the optimality
condition of P :

(46)
Θo := Θo1 ×Θo2 × · · · ×Θon

fθ1,θ2,...,θn

j := g
θj

j , (θ1, θ2, . . . , θn) ∈ Θo; 1 ≤ j ≤ n.

With these definitions, the following equality (easy to be verified but, at a first
glance, doubtful) holds

sup
θ∈Θo

[fθ, φ] := sup
(θ1,θ2,...,θn)

n∑
j=1

∫
X
φj(x)f

θ1,θ2,...,θn

j (x)dµ(x) =(47)

=
n∑
j=1

sup
θ∈Θoj

∫
X
φj(x)gθj (x)dµ(x).

Above, fθj was defined for all θ ∈ Θo and each j, 1 ≤ j ≤ n.
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But, if k < n and if we put

g
θj

j := 0, (∀) θj ∈ Θoj , k + 1 ≤ j ≤ n,

then the sum from (47) runs from 1 to k, only. �

Proposition 10. Let consider Program P ′
2U , the unrestricted finite case

of Program P2 for k = n (i.e., Θoj = Θ′
oj , card(Θ′

oj) <∞ for 1 ≤ j ≤ n and
Fr = F )

(45′) V (P ′
2U) := inf

φ∈F

n∑
j=1

max
θ∈Θ′

oj

∫
X
φj(x)gθj (x)dµ(x).

a) There exists φ∗ ∈ F such that inf value of P ′
2U is attained and there

exist n probability measures π1, π2, . . . , πn on Θ′
o1,Θ

′
o2, . . . ,Θ

′
on such that the

following relations are verified

(48) V (P ′
2U) =

∫
X

min
j≤n

d′j(x)dµ(x),

(49)
[
d′j(x)−min

k≤n
d′k(x)

]
φ∗j (x) = 0; µ-a.e., 1 ≤ j ≤ n,

and (∀) θj ∈ Θ′
oj , 1 ≤ j ≤ n,

(50)

[
max
σ∈Θ′

oj

∫
X
φ∗j (x)g

σ
j (x)dµ(x)−

∫
X
φ∗j (x)g

θj

j (x)dµ(x)

]
π
θj

j = 0,

where

(51) d ′
j (x) :=

∑
θ∈Θ′

oj

πθj g
θ
j (x).

b) A sufficient condition for a feasible solution φ∗ ∈ F to be optimal for
P ′

2U is the existence of n probability measures π1, π2, . . . , πn on Θ′
o1,Θ

′
o2, . . . ,

Θ′
on such that relations (49)–(51) are verified.

Proof. S1. Because Fr = F we can apply Theorem 7 for P ′
2U written

in form (47), using relation (46) for definition of optimality condition. Thus,
the optimal solution is depending on a probability π defined on Θ′

o := Θ′
o1 ×

Θ′
o2 × · · · ×Θ′

on.

S2. Relation (25) becomes (51). Indeed, for j = 1,

d′1(x) =
∑
θ∈Θ′

o

πθ1,θ2,...,θn fθ1,θ2,...,θn
1 (x) =

=
∑
θ∈Θ′

o

πθ1,θ2,...,θn gθ11 (x) =
∑
θ∈Θ′

o1

πθ11 gθ11 (x),
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where we defined

(52) πθ11 :=
∑

θ2,...,θn

πθ1, θ2,...,θn .

Because of
∑
θ∈Θ′

o

πθ = 1 , we have
∑

θ1∈Θ′
o1

πθ11 = 1, hence π1 is a probability. Of

course, similar results are true for j = 2, 3, . . . , n.
Now, (48) derives from (31) and (49) derives from (32).

S3. For j = 1, relation (50) results from (34), using (52) and (47).
Indeed, the following implications are true: πθ11 6= 0 ⇒ for each j ≤ n, (∃)

θj ∈ Θ′
oj such that πθ1,θ2,...,θn 6= 0 (since (52)) ⇒

n∑
j=1

∫
X φj(x)g

θj

j (x)dµ(x) =

n∑
j=1

max
σ∈Θ′

oj

∫
X φj(x)g

σ
j (x)dµ(x) (since (34) and (47)) ⇒

∫
X φj(x)g

θj

j (x)dµ(x) =

max
σ∈Θ′

oj

∫
X φj(x)g

σ
j (x)dµ(x) for j = 1, 2, . . . , n.

Hence we proved

πθ11 6= 0 ⇒
∫
X
φ1(x)gθ11 (x)dµ(x) = max

σ∈Θ′
o1

∫
X
φ1(x)gσ1 (x)dµ(x).

The last implication and (50) for j = 1 are equivalent. Of course, similar
results hold for any j ≤ n.

S4. Proof of sufficiency. πθ1,θ2,...,θn 6= 0 ⇒ π
θj

j 6= 0 for all j ≤ n ⇒∫
X φj(x)g

θj

j (x)dµ(x) = max
σ∈Θ′

oj

∫
X φj(x)g

σ
j (x)dµ(x) for all j ≤ n (since (50))

⇒
n∑
j=1

∫
X φj(x)g

θj

j (x)dµ(x) =
n∑
j=1

max
σ∈Θ′

oj

∫
X φj(x)g

σ
j (x)dµ(x) .

Thus we proved that, in our framework, (50) is equivalent with (34). �

7. EXAMPLES

We shall come back to P -type examples mentioned in Section 1.
A slightly different approach for the set of randomized decision functions

will be considered for a two-decision case. In the original formulation of Exam-
ples 1–3, authors used the set Ψ := {ψ : X → [0, 1]} of critical functions. In
spite of its redundancy, we prefer to make use of F defined by (1) for n = 2,
due to symmetry of approach.

The connection between (φ1, φ2) ∈ F and ψ ∈ Ψ is obvious,

φ1 := 1− ψ, φ2 := ψ.

The following program is a generalization of Example 1.
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Program PE1. Find the value V (PE1) defined for p ≥ 1 by

V (PE1) := max
φ∈Fr

min
j=1,p

∫
X
φ2(x)fm+j(x)dµ(x),

Fr :=
{

(φ1, φ2) ∈ F |
∫
X
φ2(x)fi(x)dµ(x) = ci, i = 1, . . . ,m

}
.

Corollary 11. Let consider Program PE1 and define the set

T :=
{(∫

X
φ2(x)f1(x)dµ(x), . . . ,

∫
X
φ2(x)fm(x)dµ(x)

)
| φ ∈ F

}
⊂ Rm.

a) If {f1, f2, . . . , fm+p } ⊂ L1(X,µ) and if (c1, c2, . . . , cm) ∈ Rm is
an interior point of T , then there exist the optimal decision function φ∗ =

(φ∗1, φ
∗
2) ∈ Fr and two vectors λ ∈ Rm and π ∈ [0, 1]p,

p∑
j=1

πj = 1 such that the

following relations are verified:

(53)

φ∗1(x) = 1 if
p∑
j=1

πjfm+j(x) <
m∑
j=1

λjfj(x),

φ∗2(x) = 1 if
p∑
j=1

πjfm+j(x) >
m∑
j=1

λjfj(x).

Moreover, the following implication holds for k = 1, 2, . . . , p,

(54) πk 6= 0 ⇒ min
j=1,p

∫
X
φ∗2(x)fm+j(x)dµ(x) =

∫
X
φ∗2(x)fm+k(x)dµ(x).

b) Sufficient for a feasible φ∗ ∈ Fr to be optimal for PE1 is the existence

of λ ∈ Rm and π ∈ [0, 1]p,
p∑
j=1

πj = 1 such that relations (53) and (54) hold.

Proof. By changing the sign of optimality condition and the sign of func-
tions fm+j(·) we obtain a PG-type program. Finally, it is enough to apply
Theorem 5 and Theorem 7. Note that, in our case, the finite version of deci-
sion criterion (22) are

d′1 = 0, d′2 = −
p∑
j=1

πjfm+j(x) +
m∑
j=1

λjfj(x). �

We rewrite Example 2 in terms of probability density functions.

Program PE2. Maximin test of level α, 0 < α < 1.
Find

V (PE2) := max
φ∈G

inf
θ∈Θ2

∫
X
φ2(x)gθ(x)dµ(x),
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G :=
{
φ ∈ F |

∫
X
φ2(x)gθ(x)dµ(x) ≤ α, (∀) θ ∈ Θ1

}
.

If we change the sign of optimality condition we obtain a PG-type pro-
gram:

−V (PE2) := min
φ∈G

sup
θ∈Θ2

∫
X
φ2(x)(−gθ(x))dµ(x).

Corollary 12. a) Program PE2 is a PG-type program, hence the op-
timal decision function φ∗ ∈ G exists and all statements of Theorem 5 hold.

b) A sufficient condition for φ∗ ∈ G to be optimal is the existence of
finite positive measure λ and of probability π such that following conditions
are verified:

φ∗1(x) = 1 if
∫

Θ2

gθ(x)dπ(θ) <
∫

Θ1

gθ(x)dλ(θ),

φ∗2(x) = 1 if
∫

Θ2

gθ(x)dπ(θ) >
∫

Θ1

gθ(x)dλ(θ);

λ

({
θ ∈ Θ1 |

∫
X
φ∗2(x)g

θ(x)dµ(x) 6= α

})
= 0;

π

({
θ ∈ Θ2 |

∫
X
φ∗2(x)g

θ(x)dµ(x) 6= inf
θ∈Θ2

∫
X
φ∗2(x)g

θ(x)dµ(x)
})

= 0.

c) Let PE′
2 be the finite case of PE2, namely Θ1 := {1, 2, . . . ,m} and

Θ2 = {m+ 1,m+ 2, . . . ,m+ p}, and define the set T ∈ Rm,

T :=
{(∫

X
φ2(x)g1(x)dµ(x), . . . ,

∫
X
φ2(x)gm(x)dµ(x)

)
| φ ∈ F

}
.

If (α, α, . . . , α) ∈ Rm is an interior point of T, then necessary and sufficient
for optimality of feasible decision function φ∗ = (φ∗1, φ

∗
2) ∈ G is the existence

of two vectors λ ∈ [0,∞)m and π ∈ [0, 1]p,
p∑
j=1

πj = 1 such that following

relations are verified:

φ∗1(x) = 1 if
∑
Θ2

πθgθ(x) <
∑
Θ1

λθgθ(x),

φ∗2(x) = 1 if
∑
Θ2

πθgθ(x) >
∑
Θ1

λθgθ(x);

∫
X
φ∗2(x)g

θ(x)dµ(x) 6= α⇒ λθ = 0, (∀)θ ∈ Θ1;∫
X
φ∗2(x)g

θ(x)dµ(x) 6= inf
σ∈Θ2

∫
X
φ∗2(x)g

θ(x)dµ(x) ⇒ πθ = 0, (∀)θ ∈ Θ2.
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(Because the optimal decision function φ∗ ∈ G exists, necessity implies the
existence of the two vectors λ ∈ [0,∞)m and π ∈ [0, 1]p mentioned above.)

Proof. Point a) is evident. Theorem 5 and Theorem 3f) applied for a
constant sequence ((λm, πm))m∈N defined by λm = λ, πm = π implies the
statement b). Note that here the decision criterion (22) are

d1 = 0, d2 =
∫

Θ2

gθ(x)dπ(θ)−
∫

Θ1

gθ(x)dλ(θ).

Theorem 7 implies statement c). �

In the framework defined by F , Example 3 can be rewritten in two equiva-
lent forms:

– Find Q1 := max
φ∈F

(
e2 inf
θ∈Θ2

Eθ(φ2(X)) + e1 inf
θ∈Θ1

Eθ(φ1(X))
)
.

– Find Q2 := min
φ∈F

(
e2 sup
θ∈Θ2

Eθ(φ1(X)) + e1 sup
θ∈Θ1

Eθ(φ2(X))
)
.

We rewrite variant Q2 in terms of probability density functions.

Program PE3. Weighted test problem PW (n = 2).
Find V (PE3) defined by

min
φ∈F

(
e2 sup
θ∈Θ2

∫
X
φ1(x)gθ(x)dµ(x) + e1 sup

θ∈Θ1

∫
X
φ2(x)gθ(x)dµ(x)

)
.

The following corollary is evident.

Corollary 13. Program PE3 is a particular case of program P2. Hence
all statements of Theorem 3 hold. If card(Θ1) <∞ and card(Θ2) <∞ , then
all statements of Proposition 10 hold. �

We rewrite Example 4 in terms of probability density functions.

Program PE4. Asymmetrical problem PA.
If for all θ ∈ Θj , j = 1, 2, . . . , n (n ≥ 2) functions gθj : X → R are

probability density functions and sup
θ
aθ < 1, the following program is defined

for 1 ≤ k < i ≤ n:
Find

V := max
φ∈G

min
j≤k

inf
θ∈Θj

∫
X
φj(x)gθj (x)dµ(x),

G :=
{
φ ∈ F |

∫
X
φj(x)gθj (x)dµ(x) ≥ aθ, (∀) θ ∈ Θj ; k + 1 ≤ j ≤ i

}
.

(If sup
θ∈Θk+1

aθ ≤ 1 and i = k + 1, then always G 6= ∅ but, if i > k + 1 it is

possible to have G = ∅ even if sup
θ
aθ < 1.)
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Corollary 14. a) Asymmetrical problem PA can be expressed as a PG
program for Θo :=

⋃
j≤k

Θj and Θr :=
⋃

k<j≤i
Θj .

b) The optimal decision function φ∗ ∈ G of PA exists and all statements
of Theorem 5 hold, provided that G 6= ∅.

c) A sufficient condition for feasible solution φ∗ ∈ G to be optimal for
PA is the existence of λ ∈ M+(Θr) and π ∈ P (Θo) such that the following
conditions are verified:

(11′′) φ∗j (x)
[
dj(x, λ, π)−max

s≤n
ds(x, λ, π)

]
= 0, µ-a.e. 1 ≤ j ≤ n,

(12′′) λ

({
θ ∈ Θj |

∫
X
φ∗j (x)g

θ
j (x)dµ(x) 6= aθ

})
= 0, k + 1 ≤ j ≤ i,

(13′′) π

({
θ ∈ Θj |

∫
X
φ∗j (x)g

θ
j (x)dµ(x) 6= V

})
= 0, 1 ≤ j ≤ k,

(7′′)

dj(x, λ, π) :=
∫

Θj

gθj (x)dπ(θ) for 1 ≤ j ≤ k,

dj(x, λ, π) :=
∫

Θj

gθj (x)dλ(θ) for k + 1 ≤ j ≤ i,

dj(x, λ, π) := 0 for i+ 1 ≤ j ≤ n,

where

V := min
j≤k

inf
θ∈Θj

∫
X
φ∗j (x)g

θ
j (x)dµ(x).

Proof. Statements a) and b) are evident if we change the sign of opti-
mality condition, of restrictions and of gθj (·)’ s and we apply Proposition 8.

For statement c) it is enough to use Theorem 5a and Corollary 4. �

8. CONCLUDING REMARK

The interest of the paper focused mainly on P , a (finite or infinite di-
mensional) programming problem general enough to describe the solution of
a broad variety of constrained and unconstrained multiple statistical decision
models. We have presented a standalone proof of the existence of the optimal
decision function and some necessary conditions for optimality. Generally, the
optimal solution does not have a simple form (i.e., basically, necessary and
sufficient conditions of optimality are not promising for direct application).
Indeed, the optimal solution must to be defined depending on a multidimen-
sional sequence of measures on parameter set. This is the price we pay for the
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lack of any topological or vector structure of the parameter set. The extremum
in the compact set of multiple decision functions is attained but the extremum
in the set of measures is not necessarily attained in our case.

We obtained simple (i.e., depending on measures, but not on sequences of
measures) necessary and sufficient conditions of optimality, for finite dimen-
sional problems, only. Some simple sufficient (but not necessary!) conditions
for optimality are also operational for finite parameter set but also for infinite
parameter set of P -type decision problems. We gave some examples.

If the parameter space (i.e., the function set indexed or dependent on the
parameter set) is finite or has a more complex structure (let’s say, a given para-
metric family of probability density functions equipped with an appropriate
topology and having some closedness properties), then the multiple decision
function could have a simpler form. Examples: [1] and [11] for the finite case
and [2] for an infinite dimensional model.

9. APPENDIX:
EXISTENCE OF OPTIMAL SOLUTION OF PROGRAM P

Theorem 2. Program P defined by (3) has an optimal solution, φ∗ ∈ Fr.
Moreover, the following relations are verified:

(A1) V (P ) = sup
τ∈Υ

inf
φ∈F

W (φ, τ) = inf
φ∈F

sup
τ∈Υ

W (φ, τ) = sup
τ∈Υ

W (φ∗, τ).

If φ∗ ∈ F verifies (A1) then φ∗ ∈ Fr.

The result will be obtained taking into account Lemma A1, Lemma A2
and Lemma A3 which follow.

Lemma A1. Program P verifies equality

V (P ) = inf
φ∈F

sup
λ∈M+(Θr)

L(φ, λ),

where

L(φ, λ) := sup
θ∈Θo

[fθ, φ] +
∫

Θr

[fθ, φ] dλ(θ).

Proof. Result will be obtained in two steps, S1 and S2.
S1. If φ ∈ F \ Fr, then sup

λ∈M+(Θr)
L(φ, λ) = +∞.

Indeed, φ ∈ F and φ /∈ Fr imply the existence of θ∗ ∈ Θr such that [fθ
∗
, φ] >

0. For given positive α > 0, we define the measure λ∗ : (Θr, Lr) → R such that
∀A ∈ Lr, λ∗(A \ {θ∗}) = 0 and λ∗({θ∗}) = α. Then L(φ, λ∗) := sup

θ∈Θo

[fθ, φ] +

[fθ
∗
, φ]α is not bounded above.
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S2. If φ ∈ Fr, then sup
λ∈M+(Θr)

L(φ, λ) = sup
θ∈Θo

[fθ, φ].

Indeed, for all θ ∈ Θr we have [fθ, φ] ≤ 0, hence sup
λ∈M+(Θr)

L(φ, λ) is

attained for λ = 0.
Obviously, the infimum value of sup

λ∈M+(Θ0)
L(φ, λ) in the set F does not

involve case S1, hence the infimum equals V (P ). �

A more general approach to Lagrangian duality (in the framework of
multiplier set defined in the topological dual space of a certain normed linear
space and the partial ordering induced by some closed convex cone) may be
found in [5], but it is beyond our actual interest.

Lemma A2. Program P verifies equality

V (P ) = inf
φ∈F

sup
τ∈Υ

W (φ, τ).

Proof. The result derives from Lemma A1 and from the equality

sup
θ∈Θo

[fθ, φ] = sup
π∈P (Θo)

∫
Θo

[fθ, φ] dπ.

(Indeed, for a given function ϕ : (Θ,L) → R, if the σ-algebra L includes
all singletons and P (Θ) is the set of probability measures on (Θ,L), then
sup
θ∈Θ

ϕ(θ) = sup
π∈P (Θ)

∫
Θ ϕ(θ)dπ.) �

Lemma A3.

inf
φ∈F

sup
τ∈Υ

W (φ, τ) = sup
τ∈Υ

inf
φ∈F

W (φ, τ).

Moreover, infimum is attained on both sides, hence inf may be replaced
by min.

Proof. The result will be obtained in five steps, S1–S5, using Kneser-Fan
minimax theorem for concave-convex functions.

S1. [L∞(X,µ)]n will be endowed with the product weak* topology. It
is well known that L1(X,µ)∗-the topological dual of L1(X,µ)- is L∞(X,µ).
(see [7]).

S2. Hence, for given h ∈ L1(X,µ) and the bilinear form 〈· , ·〉, the func-
tion 〈h, ·〉 : L∞(X,µ) → R is linear and continuous with respect to the weak*
topology.

S3. If a couple of measures (λ, π) ∈ Υ = M+(Θr) × P (Θo) is fixed, it
will be proved that W (· , (λ, π)) : [L∞(X,µ)]n → R is continuous with respect
to product weak* topology.
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Let consider Tr1, the first term of second integral of W (defined by (4))
and use Fubini Theorem:

Tr1(φ1, λ) :=
∫

Θr

∫
X
φ1(x)fθ1 (x)dµdλ =

∫
X

[ ∫
Θr

fθ1 (x)dλ
]
φ1(x)dµ.

Considering condition C2), we have∣∣∣∣ ∫
Θr

fθ1 (x)dλ
∣∣∣∣ ≤ ∫

Θr

|fθ1 (x)|dλ <
∫

Θr

τ(x)dλ = τ(x)λ(Θr).

Hence (for given finite λ), we have
∫
Θr
fθ1 (·)dλ ∈ L1(X,µ) and therefore

the functional Tr1(· , λ) : L∞(X,µ) → R is continuous with respect to the
weak* topology on L∞(X,µ). Similar statements are true for all terms of W.

S4. F is a compact set with respect to product weak* topology. (Indeed,
A := {φ0 ∈ L∞(X,µ) | 0 ≤ φ0(x) ≤ 1} is compact in weak* topology on
[L∞(X,µ)], An is also compact with respect to product weak* topology and
F is closed.)

S5. Thus: 1) W (· , τ) is continuous on [L∞(X,µ)]n with respect to pro-
duct weak* topology; 2) W is convex on F and concave on M+(Θr)×P (Θo);
3) F is a compact set (with respect to product weak* topology). Namely,
all conditions of Kneser-Fan Minimax Theorem are fulfilled. Hence minimax
equality holds and the infimum is attained on both sides. �

Comment on minimax theorem.

Above, the following classic result ([4]) was used.

Kneser-Fan minimax theorem for concave-convex functions.
Let X be a compact convex subset of a topological vector space and let Y be
a convex subset of a vector space. Let f : X × Y → R be a concave-convex
function on X × Y (i.e., f is concave on Y for each x ∈ X and convex on X
for each y ∈ Y ) and lower semi-continuous on X for every y ∈ Y. Then

sup
y∈Y

min
x∈X

f(x, y) = min
x∈X

sup
y∈Y

f(x, y).

Actually, there are numerous related minimax theorems. Example: Frenk
and Kassay gave sufficient weaker hypotheses for Fan’s result ([6]). We pre-
ferred to mention Kneser-Fan Theorem because of its direct applicability to
our case. Moreover, the interested reader can find Terkelsen’s proof of the theo-
rem. It is a simple, complete and stand alone proof, based on the separation
theorem of disjoint convex sets in Rn (see [13], Lemma and Corollary 2). �

Proof of Theorem 2. The first two equalities of (A1) derive from Lem-
ma A2 and Lemma A3, directly. Moreover, Lemma A3 implies the existence
of φ∗ ∈ F which verifies the last equality of (A1).
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Let suppose φ∗ ∈ F \Fr. Then sup
τ∈Υ

W (φ∗, τ) = +∞ (see S1 in the proof

of Lemma A1), but this contradicts Lemma 1. �
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