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In this paper, we consider the problem of vehicle following control with delay.
To solve the problem of traffic congestion, one of the solutions to be considered
consists in organizing the traffic into platoons, that is groups of vehicles including
a leader and a number of followers “tightly” spaced, all moving in a longitudinal
direction. Excepting the stability of individual cars, the problem of avoidance
of slinky type effects will be explicitly discussed. Sufficient conditions on the set
of control parameters to avoid such a phenomenon will be explicitly derived in a
frequency-domain setting.
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1. INTRODUCTION

Traffic congestion (irregular flow of traffic) became an important problem
in the last decade mainly to the exponential increasing of the transportation
around medium- and large-size cities. One of the ideas to help solving this
problem was the use of automatic control to replace human drivers and their
low-predictable reaction with respect to traffic problems. As an example, hu-
man drivers have reaction time between 0.25–1.25 sec of around 30 m or more
at 60 kms/hour (see, for instance, [19] for a complete description of human
drivers reactions, and further comments on existing traffic flow models).

A way to solve this problem is to organize the traffic into platoons, con-
sisting in groups of vehicles including a leader and a number of followers in a
longitudinal direction. In this case, the controller of each vehicle of a platoon
would use the sensor information to try to reach the speed and acceleration
of the preceding vehicle. Another problem to be considered is the so-called
slinky-type effect (see, e.g., [11], [20]). This is a phenomenon of amplification
of the spacing errors between subsequent vehicles as vehicle index increases.

The aim of this paper is to propose an explicit control law guarante-
eing simultaneously individual stability and the avoidance of the slinky-type
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effect phenomenon. We use a frequency-domain method to give necessary and
sufficient conditions for the individual stability analysis by computing the
explicit delay bounds guaranteeing asymptotic stability. Next, we shall expli-
citly compute bounds on the controller’s gains ensuring the avoidance of the
slinky effects.

The remaining paper is organized as follows: In Section 2, the problem
formulation is presented. In Section 3, we state and prove our main results. In
Section 4, two illustrative examples are presented. Finally, some concluding
remarks end the paper.

2. PROBLEM FORMULATION

The closed-loop dynamics for each vehicle of a platoon is given by the
following third order delay equation

d3

dt3
δi(t) = −α

d2

dt2
δi(t)− ksδi(t− τi)− (kv + λks)

d
dt

δi(t− τi)−(1)

−λkv
d2

dt2
δi(t− τi) + ksδi−1(t− τi−1) + kv

d
dt

δi−1(t− τi−1),

where ks and kv are the controller gains and δi is the spacing error between
the ith and (i− 1)th vehicles. The spacing error is computed as

δi(t) = xi−1(t)− xi(t)− (λvi + Hi),

where λ is a prescribed headway constant, Hi is the minimum separation
distance allowable between the ith and (i− 1)th vehicles and vi is the velocity
of the ith vehicle (see [8] and [9] for more details).

2.1. Individual stability

A basic control requirement for the overall system is the asymptotic stability
of the ith vehicle outside the influence of the preceding one (i.e., the spacing
errors verify δi−1 = δ̇i−1 = 0). In this case, the system is described by

d3

dt3
δi(t) = −α

d2

dt2
δi(t)− ksδi(t− τi)−(2)

−(kv + λks)
d
dt

δi(t− τi)− λkv
d2

dt2
δi(t− τi).
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The characteristic equation is given by a third-order transcendental equation
of the form

Γi(s, τi) := s3 + αs2 +
[
λkvs

2 + (kv + λks)s + ks

]
e−τis(3)

= Q(s) + P (s)e−sτ = 0.

Assumption 1. (a) P (0) 6= 0.
(b) The polynomials P (s) and Q(s) do not have common zeros.

If the first assumption is violated, then 0 is a zero of Γi(s, τi) for any τi ∈
R+. Therefore, the system is never asymptotically stable. If Assumption 1(b) is
not satisfied, P (s) and Q(s) have a common factor c(s) 6= constant. Simplifying
by c(s) we get a system described by (3) which satisfies Assumption 1(b). It is
noteworthy that Q(s) has only one nonzero root (s = −α) which is situated in
the left half of the complex plane. The individual vehicle stability is guaranteed
if and only if Γ has all its roots in the left half complex plane. This depends
on the delay magnitude τi. Then the problem of stability can be formulated
as a research of parameters α, λ, ks and kv such that this condition is ensured.

2.2. Avoiding slinky effect

The second part of the multi-objective problem previously defined consist
in controlling the slinky effect. The goal is to find sufficient conditions to
guarantee that we avoid such a phenomenon. Let us define

(4) G(s) = δi(s)/δi−1(s) =
(ks + skv)e−τi−1s

(ks + (kv + λks)s + λkvs2)e−τis + αs2 + s3
.

We have no slinky-type effect if

(5) |G(jω)| =
∣∣∣∣ δi(jω)
δi−1(jω)

∣∣∣∣ < 1

for any ω > 0 (see [11], [20], [21]). Then the problem turns out in finding the
set of parameters (ks, kv) and the delays τi such that the stability of the system
(2) is guaranteed and the condition (5) is satisfied (to avoid slinky-effect).

3. MAIN RESULTS

3.1. Delay stability margin

Before proceeding further, we consider the case without delay. Analyzing
the asymptotic stability of the system (1) free of delay turns out to check when
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the polynomial Γi(s, 0), with τi = 0, is Hurwitz. Since α, λ, ks and kv are
strictly positive, the third-order polynomial

(6) s3 + (α + λkv)s2 + (kv + λks)s + ks = 0

is Hurwitz if and only if

(7) (α + λkv)(kv + λks) > ks,

which is equivalent to

(8) λk2
v + (α + λ2ks)kv + (αλ− 1)ks > 0.

Since α, λ, ks and kv are strictly positive the solution of the inequality (8) is
the set{
(kv, ks)∈R2

+ | kv > max
{

0,
1− αλ

λ2

}}
∪
(

0,
1− αλ

λ2

)
×
(

0,
λk2

v + αkv

1− αλ− λ2kv

)
.

Denote now by Ω the set of crossing frequencies, that is the set of reals
ω > 0, such that ±jω is a solution of the characteristic equation (3). We have
the following:

Proposition 1. Consider the characteristic equation (3) associated to
the system (2). Then:

(a) the crossing frequency set Ω is not empty, and
(b) the system is asymptotically stable for all delays τi ∈ (0, τ?) where τ?

is defined by

(9) τ? =
1
ω

arccos
(

α(ks − λkvω
2)ω2 + (kv + λks)ω4

(ks − λkvω2)2 + (kv + λks)2ω2

)
,

where ω is the unique element of Ω.

The condition (a) above simply says that the corresponding system can-
not be delay-independent asymptotically stable, and the condition (b) above
gives an explicit expression of the delay margin τ?. In order to have a self-
contained paper, a proof of the Proposition above is included in the Appendix.
For a different proof, see, for instance, [18].

3.2. Stability analysis in controller parameter space (kv, ks)

In the sequel, we study the behavior of the system for a fixed delay
value τ . More precisely, for a given τ we search the crossing frequencies ω and
the corresponding crossing points in the parameter space (kv, ks) defined by
the control law such that Q(jω, kv, ks, τ) + P (jω, kv, ks, τ)e−jωτ = 0.

According to the continuity of zeros with respect to the delay parameters,
the number of roots in the right-half plane (RHP) can change only when some
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zeros appear and cross the imaginary axis. Thus, it is natural to consider the
frequency crossing set Ω consisting of all real positive ω such that there exist
at least a pair (kv, ks) for which

(10) H(jω, kv, ks, τ) := Q(jω) + P (jω)e−jωτ = 0.

Remark 1. Using the conjugate of a complex number we get

H(jω, kv, ks, τ) = 0 ⇔ H(−jω, kv, ks, τ) = 0.

Therefore, it is natural to consider only positive frequencies, that is Ω ⊂
(0,∞).

Considering that the set Ω and the parameters α, λ are known we can
easily derive all the crossing points in the parameter space (kv, ks).

Proposition 2. For a given τ > 0 and ω ∈ Ω the corresponding crossing
point (kv, ks) is given by

kv =
ω2(1− αλ) cos ωτ + ω(α + λω2) sinωτ

1 + λ2ω2
,(11)

ks =
ω2(λω2 + α) cos ωτ + ω3(αλ− 1) sinωτ

1 + λ2ω2
.(12)

Proof. Using the decomposition of the equation (10) into real and imagi-
nary part, straightforward computation lead us to

kv + λks = ω(ω cos ωτ + α sinωτ),(13)

ks − λkvω
2 = ω2(α cos ωτ − ω sinωτ)(14)

and further we can derive the result stated above. �

As an example, let us consider the case where α = 5, λ = 1 and τ = 0.5.
Then for each ω ∈ Ω the corresponding crossing points (kv, ks) are represented
in the following figure.

Remark 2. For all ω ∈ Ω we have P (jω) 6= 0. Indeed, it is easy to see that
if ω ∈ Ω, then there exists at least one pair (kv, ks) such that H(jω, k, T, τ) = 0.
Therefore, assuming that P (jω) = 0 we get also Q(jω) = 0 which contradicts
Assumption 1(b).

Since we are interested in finding the crossing points (kv, ks) such that kv

and ks are finite the frequency crossing set Ω is characterized by the following:

Proposition 3. The frequency crossing set Ω consists of a finite number
of intervals of finite length.

Proof. It is obvious from the equations (11) and (12) that the controller
parameters kv and ks approach infinity when ω →∞. Thus, in order to have
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finite values for kv and ks we have to impose an upper limit for the variation of
ω. On the other hand, considering Ω ⊂ (0,M ], it is clear that the inequalities
kv > 0 and ks > 0 are simultaneously satisfied for ω into a finite number of
intervals included in (0,M ]. �

Let us suppose that Ω =
N⋃

`=1

Ω`. Then (11) and (12) define a continu-

ous curve. Using the notations introduced in the previous paragraph and the
technique developed in [6] and [15], we can easily derive the crossing direction
corresponding to this curve.

More exactly, let us denote T` the curve defined above and consider the
following decompositions into real and imaginary parts

R0 + jI0 =
j

s

∂H(s, kv, ks, τ)
∂s

∣∣∣∣
s=jω

,

R1 + jI1 = − 1
s

∂H(s, kv, ks, τ)
∂kv

∣∣∣∣
s=jω

,

R2 + jI2 = − 1
s

∂H(s, kv, ks, τ)
∂ks

∣∣∣∣
s=jω

.

Then, since H(s, kv, ks, τ) is an analytic function of s, kv and ks, the implicit
function theorem indicates that the tangent of T` can be expressed as

(15)


dkv

dω

dks

dω

 =
1

R1I2 −R2I1

(
R1I0 −R0I1

R0I2 −R2I0

)
,

provided that

(16) R1I2 −R2I1 6= 0.

It follows that T` is smooth everywhere except possibly at the points where
either (16) is not satisfied, or when

(17)
dkv

dω
=

dks

dω
= 0.

From the above discussions, we can conclude with the following:

Proposition 4. The curve T` is smooth everywhere except possibly at the
point corresponding to s = jω such that s = jω is a multiple solution of (10).

Proof. If (17) is satisfied then straightforward computations show us that
R0 = I0 = 0. In other words, s = jω is a multiple solution of (10).
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On the other hand,

R1I2 −R2I1 = −ω(1 + λ2ω2) < 0, ∀ω > 0. �

The next paragraph focuses on the characterization of the crossing di-
rection corresponding to each of the curves defined by (11) and (12) (see, for
instance, [13] or [14] for similar results for different problems):

We will call the direction of the curve that corresponds to increasing ω
the positive direction. We will also call the region on the left hand side as we
head in the positive direction of the curve the region on the left.

Proposition 5. Assume ω ∈ Ω`, kv, ks satisfy (11) and (12) respectively,
and ω is a simple solution of (10) and H(jω′, kv, ks, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω
(i.e., (kv, ks) is not an intersection point of two curves or different sections of
a single curve).

Then a pair of solutions of (10) cross the imaginary axis to the right,
through s = ±jω if R1I2−R2I1 > 0. The crossing is to the left if the inequality
is reversed.

Remark 3. In the proof of Proposition 4 we have shown that R1I2−R2I1

is always negative. Thus, a system described by (10) may have more than one
stability region in controller parameter space (kv, ks) if one of the following
two items are satisfied:

• it has one or more crossing curves with some turning points (the di-
rection of T` in controller parameter space changes);

• it has at least two different crossing curves with opposite direction in
(kv, ks)-space.

3.3. Avoiding slinky effects

Now, we treat the second part of the multi-objective problem under con-
sideration. This correspond to the characterization of the conditions guaran-
teeing that we avoid slinky-effects. The condition (5) can be rewritten as:

(18) A(ω, τi)(ω) = ω2B(ω, τi) ≥ 0,

with

B(ω, τi)(ω) = ω4 − 2λkv sin(ωτi)ω3+

+(λ2k2
v + α2 + 2(αλkv − kv − λks) cos(ωτi))ω2+

+2(ks − α(kv + λks)) sin(ωτi)ω + λ2k2
s − 2αks cos(ωτi),

which should be satisfied for all ω ∈ R.
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The objective is to define conditions on the parameters of the controller,
in order to satisfy this constraint.

Consider first the case τi = 0. Then, we have

(19) B(ω, 0) = ω4 +
[
(λkv + α)2 − 2(kv + λks)

]
ω2 + λ2k2

s − 2αks.

A necessary condition for the positivity of B(ω, 0) is

(20) λ2k2
s − 2αks > 0,

which implies that

(21) ks ∈
(

2α

λ2
,+∞

)
.

Under this condition, the positivity of B(ω, 0) is guaranteed if

(22)
[
(λkv + α)2 − 2(kv + λks)

]2 ≤ 4(λ2k2
s − 2αks)

which leads to

(23) −2ksλ

√
1− 2α

λ2ks
≤ (λkv + α)2 − 2(kv + λks) ≤ 2ksλ

√
1− 2α

λ2ks
.

In order to complete this analysis, we want to characterize the set of pa-
rameters kv guaranteeing the previous inequality under the constraint (21).
Considering the second inequality in (23), which is equivalent to

λ2k2
v + 2(λα− 1)kv + α2 − 2λks

(
1 +

√
1− 2α

λ2ks

)
≤ 0

we can remark that if

(24) ks > max
{

2α

λ2
,
2αλ− 1

2λ3

}
then there exists at least one positive value kv, such that the second inequality
in (23) is satisfied. Moreover, kv should satisfy

(25) max
{

0,
1− αλ−

√
∆1

λ2

}
≤ kv ≤

1− αλ +
√

∆1

λ2
,

where

∆1 = 1− 2αλ + 2λ3ks

(
1 +

√
1− 2α

λ2ks

)
.

The left inequality in (23) can be rewritten as

λ2k2
v + 2(λα− 1)kv + α2 − 2λks

(
1−

√
1− 2α

λ2ks

)
≥ 0.



9 On vehicle following control systems with delays 225

This leads to the following condition on kv

(26) kv ∈
(
−∞,

1− αλ−
√

∆2

λ2

]
∪
[
1− αλ +

√
∆2

λ2
,+∞

)
,

where

∆2 = 1− 2αλ + 2λ3ks

(
1−

√
1− 2α

λ2ks

)
is assumed to be positive. If ∆2 < 0, then the first inequality in (23) will be
satisfied for all positive kv. Finally, using the conditions (25) and (26) function
of the sign of ∆2, it follows that kv must be chosen in the intersection of the
intervals defined by (25) and (26).

Now we analyze the sign of B(ω, τi) when τi ∈ (0, τ?) with τ? defined in
(9). We consider again B(ω, τi) given by (18). For the terms involving cos(ωτi),
we have

−2αks cos(ωτi) ≥ −2αks

and
2(αλkv − kv − λks) cos(ωτi) ≥ −2|αλkv − kv − λks|.

Concerning the terms involving sin(ωτi), since sin(ωτi) ≤ ωτi for ω > 0 then

−2λkv sin(ωτi)ω3 ≥ −2λkvτiω
4 ≥ −2λkvτ

?ω4

and
2(ks − α(kv + λks)) sin(ωτi)ω ≥ −2|ks − α(kv + λks)|τiω

2

≥ −2|ks − α(kv + λks)|τ?ω2.

Therefore,

B(ω, τi) ≥ (1− 2λkvτ
?)ω4 +

[
λ2k2

v + α2 − 2|αλkv − kv − λks|−
−2τ?|ks − α(kv + λks)|

]
ω2 + λ2k2

s − 2αks ≥ (1− 2λkvτ
?)ω4+

+
[
(λkv − α)2− 2kv − 2λks−2τ?ks−2τ?α(kv+λks)

]
ω2 + λ2k2

s − 2αks ≥ 0.

Let us set

C(ω, τ?) = (1− 2λkvτ
?)ω4 +

[
(λkv − α)2 − 2kv−

−2λks − 2τ?ks − 2τ?α(kv + λks)
]
ω2 + λ2k2

s − 2αks.

We suppose that

(27) 1− 2λkvτ
? > 0.

Then the positivity of C(ω, τ?) is ensured if (21) is satisfied and if we have

[(λkv − α)2 − 2kv − 2λks − 2τ?ks − 2τ?α(kv + λks)]2 ≤(28)

≤ 4(1− 2λkvτ
?)(λ2k2

s − 2αks).
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This leads to the condition

−2ksλ

√(
1− 2α

λ2ks

)
(1− 2λkvτ?) ≤ (λkv − α)2 − 2kv − 2λks−(29)

−2τ?(ks + α(kv + λks)) ≤ 2ksλ

√(
1− 2α

λ2ks

)
(1− 2λkvτ?).

Now, we search to define the set of parameters kv which satisfy these inequa-
lities. Since 1− 2λkvτ

? ≤ 1 and 1− 2α
λ2ks

≤ 1 one has

λ2k2
v − 2(1 + αλ + ατ?)kv + α2 − 2τ?(ks + αλks)−(30)

−2λks

(
1 +

√(
1− 2α

λ2ks

)
(1− 2λkvτ?)

)
≤

≤ λ2k2
v − 2(1 + αλ + ατ?)kv + α2 − 2τ?(ks + αλks)−

−2λks

(
1 + (1− 2λkvτ

?)

(
1− 2α

λ2ks

))
.

Thus, if we can find kv such that

λ2k2
v − 2(1 + αλ + 5ατ? − 2τ?λ2ks)kv+(31)

+α2 − 2τ?(1 + αλ)ks − 4λks +
4α

λ
≤ 0,

then the second inequality in (29), will be satisfied. A necessary condition to
guarantee the previous condition is to have

∆1,τ? =
(
1 + αλ + 5ατ? − 2τ?λ2ks

)2−(32)

−λ2
(
α2 − 2τ?(1 + αλ)ks − 4λks +

4α

λ

)
≥ 0

and under this condition, we choose kv as follows

(33) max

{
0,

a1 −
√

∆1,τ?

λ2

}
≤ kv ≤

a1 +
√

∆1,τ?

λ2
,

where a1 = 1 + αλ + 5ατ?− 2τ?λ2ks. We can remark that (32) can be rewrit-
ten as

4τ?2
λ4k2

s + 2λ2
(
2λ− τ?(1 + 10ατ? + αλ)

)
ks+(1 + 5ατ?)2 + 2αλ[5ατ? − 1]≥0

which leads to

(34) ks ∈
(
−∞, ξ1] ∪ [ξ2,+∞

)
,
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where

ξ1 =
λ2
(
2λ− τ?(1 + 10ατ? + αλ)

)
−
√

∆1,τ?

4τ?2λ4
,

ξ2 =
λ2
(
2λ− τ?(1 + 10ατ? + αλ)

)
+
√

∆1,τ?

4τ?2λ4

and

∆1,τ? = λ4
(
2λ− τ?(1 + 10ατ? + αλ)

)2 − 4τ?2
λ4[(1 + 5ατ?)2 + 2αλ(5ατ? − 1)]

which is supposed to be positive. If ∆1,τ? < 0, then the condition (32) is
verified for all ks ≥ 0.

The first inequality in (29) can be rewritten as

0 ≤ λ2k2
v − 2(1 + αλ + ατ?)kv + α2 − 2τ?(ks + αλks)−(35)

−2λks

(
1−

√(
1− 2α

λ2ks

)
(1− 2λkvτ?)

)
.

Proceeding as above, we have

λ2k2
v − 2(1 + αλ + ατ?)kv + α2 − 2τ?(ks + αλks)−(36)

−2λks

(
1− (1− 2λkvτ

?)
(

1− 2α

λ2ks

))
≤

≤ λ2k2
v − 2(1 + αλ + ατ?)kv + α2 − 2τ?(ks + αλks)−

−2λks

(
1−

√(
1− 2α

λ2ks

)
(1− 2λkvτ?)

)
.

If there exists kv such that

0 ≤ λ2k2
v − 2

(
1 + αλ + ατ? + 2τ?λ2ks

(
1− 2α

λ2ks

))
kv+(37)

+α2 − 2τ?(ks + αλks)− 2λks

(
1−

(
1− 2α

λ2ks

))
then the first inequality in (29), will be verified. This inequality can be sim-
plified as

(38) 0 ≤ λ2k2
v − 2(1 + αλ− 3ατ? + 2τ?λ2ks)kv + α2 − 2τ?(1 + αλ)ks −

4α

λ
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and is satisfied for all kv such that

kv ∈

(
−∞,

1 + αλ− 3ατ? + 2τ?λ2ks −
√

∆2,τ?

λ2

]
∪(39)

∪

[
1 + αλ− 3ατ? + 2τ?λ2ks +

√
∆2,τ?

λ2
,+∞

)
,

where

(40) ∆2,τ? =
(
1 + αλ− 3ατ? + 2τ?λ2ks

)2 − λ2

(
α2 − 2τ?(1 + αλ)ks −

4α

λ

)
is supposed to be positive. If ∆2,τ? < 0 the inequality (37) and by conse-
quence (35), would be satisfied for all kv ≥ 0. The positivity of ∆2,τ? can be
rewritten as

4τ?2
λ4k2

s + 6λ2τ?[1 + α− 2ατ?]ks + (1− 3ατ?)2 + 6αλ(1− ατ?) ≥ 0

which leads to the condition on ks given by

ks ∈

−∞,
3λ2τ?(2ατ? − 1− α)−

√
∆2,τ?

4λ4τ?2

∪(41)

∪

3λ2τ?(2ατ? − 1− α) +
√

∆2,τ?

4λ4τ?2 ,+∞


if

(42) ∆2,τ? = 9λ4τ?2
[1 + α− 2ατ?]2 − 4λ4τ?2

[(1− 3ατ?)2 + 6αλ(1− ατ?)]

is positive. It is clear that if ∆2,τ? is negative, then the positivity of ∆2,τ?

would be satisfied for all ks ≥ 0.
The negativity of ∆2,τ? implies that the first inequality in (29) is satisfied

for all kv positive. Moreover, ∆2,τ? ≤ 0 is satisfied for

max

0,
3λ2τ?(2ατ? − 1− α)−

√
∆2,τ?

4λ4τ?2

 ≤ ks ≤(43)

≤
3λ2τ?(2ατ? − 1− α) +

√
∆2,τ?

4λ4τ?2 ,

where ∆2,τ? is assumed to be positive.
Summarizing, the parameters kv and ks guaranteeing that (29) is satis-

fied, verify both:
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• kv in the interval defined by (33) under the necessary condition that
∆1,τ? is positive;

• kv > 0 if ∆2,τ? ≥ 0 or kv in the interval defined by (39) if ∆2,τ? ≤ 0.
It is noteworthy that ∆1,τ? and ∆2,τ? are function of ks. Their sign are con-
ditioned by the sign of ∆1,τ? and ∆2,τ? .

4. SIMULATION RESULTS

We consider a platoon of 4 following vehicles. We suppose that initially
these vehicles travel at the steady-state velocity of v0 = 20 m/s and the safety
distance is characterized by λ = 1 and Hi = 2 m with α = 5. We choose
the controller parameters ks = 19 and kv = 0.12. Then by Proposition 1, we
obtain the optimal delay margin equal to τ∗ = 0.215. The system (2) is then
asymptotically stable for all delays τ < 0.215.

We arrive to the same conclusion by using the Matlab package DDE-
BIFTOOL (see [3]) to represent the rightmost roots of the characteristic equa-
tion. Indeed, if we choose the limit value of the delay τ = 0.215 then we can
observe that rightmost roots of the characteristic equation are on the imagi-
nary axis. When we choose a larger delay, the system becomes unstable.

Fig. 1. Left: rightmost roots of the characteristic equation for τ = 0.215.
Right: rightmost roots of the characteristic equation for τ = 0.25.

The upper delay bound guaranteing no slinky effects is τ = 0.0504. Therefore,
if we set the delay value τ = 0.2, the slinky effect is present while for τ = 0.05
one has no slinky effect (see Figure 2). Precisely, the spacings, velocities and
accelerations stop oscillating when τ = 0.05 meaning that we arrive to a
consensus in terms of distance, velocity and acceleration. In other words, the
slinky effect is not encountered. On the other hand, when τ = 0.2, the spacings,
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velocities and accelerations do not stop oscillating which indicate the presence
of the slinky effect.

Fig. 2. Left: control responses of 4 following vehicles with time delay 0.2 s,

Right: control responses of 4 following vehicles with time delay 0.05 s.

Thus, in order to guarantee the individual stability of vehicles of the
platoon and to avoid the slinky effect phenomenon, it suffices to choose the
delay τ ≤ min(0.215, 0.0504) = 0.0504.
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5. CONCLUSIONS

In this paper, we have considered the problem of vehicle following con-
trol system. For a given controller structure, we have developed conditions
guaranteeing the individual stability of each vehicle of the platoon, and the
derived conditions depend on the size of the delay. Moreover, we considered
the problem of slinky-effect phenomenon, and we proposed sufficient condi-
tions to avoid it. We have given an explicit characterization of some sets of
controller parameters which solve the problem.

A. PROOF OF PROPOSITION 1

(a) Straightforward. Assume by contradiction that the delay-independent
stability holds. As discussed in [16], a necessary condition for delay-independent
stability is the Hurwitz stability of Q, and this is not the case.

(b) Since the system free of delay is asymptotically stable, the conclusion
of (a) leads to the existence of a delay margin τ?, such that the system is
asymptotically stable for all delays τ ∈ [0, τ?). Furthermore at τ = τ?, the
characteristic equation (3) has at least one root s = jw on the imaginary axis,
with w ∈ Ω (crossing frequency). Since

(44)
P (jw)
Q(jw)

= −e−jwτ = − cos(wτ) + j sin(wτ)

this implies that

cos(wτ) = −<
(

P (jw)
Q(jw)

)
.

We compute the right hand side of this equation with

P (jw)
Q(jw)

= −α(ks − λkvw
2)w2 + (kv + λks)w4

(ks − λkvw2)2 + (kv + λks)2w2
−(45)

−j(ks − λkvw
2)w3 − jα(kv + λks)w3

(ks − λkvw2)2 + (kv + λks)2w2
.

Therefore,

(46) τ? =
1
w

arccos
(

α(ks − λkvw
2)w2 + (kv + λks)w4

(ks − λkvw2)2 + (kv + λks)2w2

)
,

where w is a crossing frequency.
In the sequel, we explicitly determinate the expression of the crossing

frequencies by solving the equation

(47) w6 + (α2 − λ2k2
v)w

4 − (k2
v + λ2k2

s)w
2 − k2

s = 0.
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For this equation in w2, we have one real solution (and two complex roots) or
three real roots. We have to analyze their sign to consider only the positive
candidates.

If we denote by ri, i = 1, . . . , 3, the roots of the equation, we know that
they are solutions of

x3 − Sx2 + Π2x−Π3 = 0,

where S =
3∑

i=1
ri, Π2 =

∏
i6=j∈{1,...,3}

rirj , Π3 =
∏

i∈{1,...,3}
ri.

Since Π3 = k2
s > 0, if we have only one real root (the others are complex

and conjugate), this root is positive and if we have three real roots, we have
one positive root and two real roots with the same sign. In the latter case, we
only take into account only the case where the three real roots are positive.
Moreover, with Π2 = −(k2

v + λ2k2
s) < 0, we can remark that we cannot have

three positive real roots. Finally, we can have only one positive real root
(square of the crossing frequency). Now we apply the method of Cardan to
define the form of this crossing frequency. We can establish that if(

α4 + λ2
(
λ2k4

v + 3k2
s − 2α2k2

v

)
+ 3k2

v

)3
<

<
1
4

(
(α2 − λ2k2

v)[2(α2 − λ2k2
v) + 9(λ2k2

s + k2
v)]− 27k2

s

)2
,

then the crossing frequency is of the form

(48) wf =

√(
−w1

54

) 1
3 +

(
−w2

54

) 1
3 − α2 − λ2k2

v

3
,

where

w1 = γ1 +
√

ζ1 and w2 = γ1 −
√

ζ1,(49)

with
γ1 =

(
(α2 − λ2k2

v)
[
2(α2 − λ2k2

v)
2 + 9(λ2k2

s + k2
v)
]
− 27k2

s

)
,

and
ζ1 = γ2

1 − 4
(
(α2 − λ2k2

v)
2 + 3(λ2k2

s + k2
v)
)3

.

If (
α4 + λ2

(
λ2k4

v + 3k2
s − 2α2k2

v

)
+ 3k2

v

)3
>

>
1
4

(
(α2 − λ2k2

v)
[
2(α2 − λ2k2

v) + 9(λ2k2
s + k2

v)
]
− 27k2

s

)2
,

then it is of the form

(50) wf =

√(
− w̃1

54

) 1
3

+
(
− w̃2

54

) 1
3

− α2 − λ2k2
v

3
,
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where

(51) w̃1 = γ1 + j
√
−ζ1 and w̃2 = γ1 − j

√
−ζ1.
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