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We deal with the functional equation in the title for real and nonzero a, b. Namely,
in this paper we give some qualitative properties for the continuous solutions of
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1. INTRODUCTION

In this part results from [2] and [3] (without proof) which will be used
throughout this paper are introduced.

Iterative polinomial equations are solved in [1] and [9] with rather similar
methods.

Let a, b be real numbers a 6= 0, b 6= 0. We shall be concerned with the
functional equation (called fundamental equation.)

f ◦ f + af + b1R = 0.

Namely, we want to find a continuous function f : R → R having the property
that, for any x ∈ R

f (f(x)) + af(x) + bx = 0.

Such a function (in case it exists) will be called a solution of the fundamental
equation (or, simply a solution). In the sequel, the fundamental equation will
be written in the form

f ◦ f + af + bx = 0.

It is seen that a solution must be a homeomorphism. Moreover, the function
g = f−1 satisfies the equation

g ◦ g +
a

b
g +

1
b

1R = 0.
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Incidentally, the fundamental equation will be written alternatively

f ◦ f ± af ± bx = 0.

with positive a and b.
The characteristic equation of the problem is the quadratic equation

x2 + ax + b = 0.

with (complex) roots r1, r2 and discriminant ∆ = a2 − 4b. Actually, in this
paper we shall study the case when r1, r2 are real, because, for non real r1, r2

the fundamental equation has no solutions.

Theorem 1.a (Calibration Theorem). Let us assume that f is a solution
and |r1| ≤ |r2|. Then, for any real x, y one has

|r1| · |x− y| ≤ |f(x)− f(y)| ≤ |r2| |x− y|.

Lemma 1.1. Let us assume 1 < r1 < r2. For any solution f we have the
following properties:

a) f(0) = 0.
b) For any x0 ∈ R one has

r1x0 ≤ f(x0) ≤ r2x0 if x0 ≥ 0,

r2x0 ≤ f(x0) ≤ r1x0 if x0 < 0.

Lemma 1.2. Let us assume that r2 < r1 < 0. For any solution f , we have
the properties:

a) f(0) = 0.
b) For any x0 ∈ R,

r2x0 ≤ f(x0) ≤ r1x0 if x0 ≥ 0,

r1x0 ≤ f(x0) ≤ r2x0 if x0 < 0.

Lemma 1.3. Let us assume that r2 < r1 < −1. Let 0 6= x0 ∈ R and
x1 ∈ [r2x0, r1x0] (in case x0 > 0) or x1 ∈ [r1x0, r2x0] (in case x0 < 0). Using
the coefficients of the fundamental equation we define the sequences (xn)n≥0

and (x−n)n≥0 as follows.
a) xn+2 = −axn+1− bxn with starting terms x0 and x1. Such a sequence

is the sequence given via xn+1 = f(xn), with starting term x0 (see Lemma 1.2
for x1 = f(x0)).

b) The sequence (x−n)n is defined in two steps. First, we define the se-
quence (yn)n≥0 by

yn+2 = −a

b
yn+1 −

1
b
yn

with starting terms y0 = x1 and y1 = x0.
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Next, we write x−n = yn+1 for all natural n. Hence

x−n−2 = −a

b
x−n−1 −

1
b

x−n.

with starting terms x0 = y1 and x−1 = y2. Such a sequence is the sequence
given via x−n−1 = f−1 (x−n) with starting term x0 (see Lemma 1.2 for x1 =
f(x0) ⇔ x0 = f−1 (x1)).

In case x0 > 0 we have x2n ↑ ∞ (strictly), x2n+1 ↓ −∞ (strictly),
x−2n ↓ 0 (strictly) and x−2n+1 ↑ 0 (strictly). This implies⋃

n≥0

([x2n, x2n+2] ∪ [x−2n, x−2n+2]) = (0,∞),

⋃
n>0

([x2n+1, x2n−1] ∪ [x−2n+1, x−2n−1]) = (−∞, 0).

The case x0 < 0 is symmetric (e.g., x2n ↓ −∞ strictly . . . ).

Lemma 1.4. Let us assume that 1 < r1 < r2. Let 0 6= x0 ∈ R and
x1 ∈ [r1x0, r2x0] (in case x0 > 0) or x1 ∈ [r2x0, r1x0] (in case x0 < 0).

Define the sequences (xn)n≥0 and (x−n)n≥0 as in Lemma 1.3. In parti-
cular we can take xn+1 = f(xn) with starting term x0 and x−n−1 = f−1 (x−n)
with starting term x0 (see Lemma 1.1).

In case x0 > 0 we have xn ↑ ∞ (strictly), x−n ↓ 0 (strictly). In case
x0 < 0 we have xn ↓ −∞ (strictly) and x−n ↑ 0 (strictly). This implies⋃

n∈Z
[xn, xn+1] = (0,∞) if x0 > 0,⋃

n∈Z
[xn, xn+1] = (−∞, 0) if x0 < 0.

Lemma 1.5. Let us assume that 0 < r1 < 1 < r2. Let x0 ∈ R and
x1 > r1x0, x1 > r2x0. Define the sequence (xn)n≥0 and (x−n)n≥0 exactly like
in Lemma 1.3. In particular, we can take xn+1 = f(xn), with starting term x0

and x−n−1 = f−1 (x−n) , with starting term x0.
Then xn ↑ ∞ (strictly), x−n ↓ −∞ (strictly) and⋃

n∈Z
[xn, xn+1] = R.

Theorem 1.6 (Case 1 < r1 < r2). We shall write the fundamental equa-
tion in the form

f ◦ f − af + bx = 0.
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All the solutions f : R → R are of the form

f(x) =

 F1(x) if x > 0,
0 if x = 0,
F2(x) if x < 0,

where F1 and F2 are constructed as follows:

1. Construct the sequences (xn)n≥0 and (x−n)n≥0 according to Lemma 1.4
starting with an arbitrary x0 > 0 and x1 ∈ [r1x0, r2x0]. Consider a bijection
f0 : [x0, x1] → [x1, x2] having the property that for any x > y in [x0, x1] one has

(1.1) r1(x− y) ≤ f0(x)− f0(y) ≤ r2(x− y).

Then, for any natural n, one can construct the bijections

fn : [xn, xn+1] → [xn+1, xn+2]

and
f−n : [x−n, x−n+1] → [x−n+1, x−n+2]

defined via

(1.2) fn+1(x) = ax− bf−1
n (x) and f−1

−n−1(x) =
a

b
x− 1

b
f−1
−n(x).

Finally, for any

x ∈ (0,∞) =
⋃
n∈Z

[xn, xn+1]

we have, for some natural n, either x ∈ [xn, xn+1] and F1(x) = fn(x) or
x ∈ [x−n, x−n+1] and F1(x) = f−n(x).

The values at the common endpoints coincide.

2. Construct the sequences (xn)n≥0 and (x−n)n≥0 according to Lemma 1.4
starting with an arbitrary x0 < 0 and x1 ∈ [r2x0, r1x0]. Consider a bijection
f0 : [x1, x0] → [x2, x1] having the property (1.1) for any x > y ı̂n [x1, x0].

Then, for any natural n, one can construct the bijections

fn : [xn+1, xn] → [xn+2, xn+1]

and
f−n : [x−n+1, x−n] → [x−n+2, x−n+1]

defined via (1.2).
Finally, for any

x ∈ (−∞, 0) =
⋃
n∈Z

[xn+1, xn]

we have, for some natural n, either x ∈ [xn+1, xn] and F2(x) = fn(x) or
x ∈ [x−n+1, x−n] and F2(x) = f−n(x). The values at the common endpoints
coincide.
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Theorem 1.7 (Case r2 < r1 < −1). All the solutions are obtained as
follows. Start with an arbitrary x0 > 0, and we choose x1 ∈ [r2x0, r1x0]. Apply
Lemma 1.3 and construct the sequences (xn)n and (x−n)n. Let f0 : [x0, x2] →
[x3, x1] be a strictly decreasing bijection having the property

(1.3) −r1(x− y) ≤ f0(y)− f0(x) ≤ −r2(x− y)

for all x > y in [x0, x2].
Construct the following strictly decreasing bijections (for any natural n):

f2n : [x2n, x2n+2] → [x2n+3, x2n+1] ,

(1.4) f2n(x) = −ax− bf−1
2n−1(x)

f2n+1 : [x2n+3, x2n+1] → [x2n+2, x2n+4] ,

(1.5) f2n+1(x) = −ax− bf−1
2n (x)

f−2n : [x−2n, x−2n+2] → [x−2n+3, x−2n+1] ,

(1.6) f−1
−2n(x) = −a

b
x− 1

b
f−2n+1(x)

f−2n−1 : [x−2n+1, x−2n−1] → [x−2n, x−2n+2] ,

(1.7) f−1
−2n−1(x) = −a

b
x− 1

b
f−2n(x).

Since the reunion of all above mentioned intervals is equal to R \ {0}, we
can construct f : R → R, given by

f(x) =
{

0 if x = 0,
fn(x) if x 6= 0,

where 0 6=x belongs to one of the above mentioned intervals which is the domain
of definition for fn, n∈Z. The values at the common endpoints coincide.

Then f is a solution and all the solutions can be obtained in this way.

Theorem 1.8. Assume 0 < r1 < 1 < r2 and let f be a solution with
the property f(0) 6= 0. Then either f(x) > x for any x ∈ R or f(x) < x
for any x ∈ R.

I. Assume that f(x) > x for all x ∈ R. Then f can be obtained as follows:
Construct the sequences (xn)n and (x−n)n according to Lemma 1.5, where we
take x0 = 0 and x1 > 0 arbitrary (the conditions of Lemma 1.5 are fulfilled).
Consider a strictly increasing bijection f0 : [0, x1] → [x1, x2] such that

r1(x− y) ≤ f0(x)− f0(y) ≤ r2(x− y)

for all x > y in [0, x1].
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Then, for any natural n one can construct the bijections fn : [xn, xn+1] →
[xn+1, xn+2] and f−n : [x−n, x−n+1] → [x−n+1, x−n+2] defined by

fn+1(x) = ax− bf−1
n (x) and f−1

−n−1(x) =
a

b
x− 1

b
f−n(x).

Finally, for any

x ∈ R =
⋃
n∈Z

[xn, xn+1]

we have, for some natural n, either x ∈ [xn, xn+1] and f(x) = fn(x), or
x ∈ [x−n, x−n+1] and f(x) = f−n(x).

II. Assume that f(x) < x for any x ∈ R. Then f−1(x) > x for any x ∈ R
and f−1 can be constructed according to part I.

Remark. The characteristic equation for the problem concerning the in-
verse g = f−1 is

bx2 + ax + 1 = 0

and has the roots r−1
1 , r−1

2 where r1, r2 are the roots of the characteristic
equation for f . Consequently, Theorems 1.6 and 1.7 cover the cases 0 < r1 <
r2 < 1, −1 < r1 < r2 < 0, too.

2. SUFFICIENT CONDITIONS FOR THEUNIQUENESS
OF THE SOLUTIONS

We consider the functional equation

(E1) f ◦ f(x) + af(x) + bx = 0,

where the signs of a and b are taken according to the convention from the
beginning of part 1.

We shall establish which conditions guarantee the uniqueness of con-
tinuous solutions of this functional equation. More precisely, if two solutions
coincide on a non degenerate interval under some conditions, then they co-
incide everywhere. We shall see which conditions must fulfill this interval in
each case.

Theorem 2.1. Let us consider the functional equation (E1) in case ∆>0.
a) If 1 < r1 < r2 and two solutions coincide on I = [a′, b′], I ⊂ (0,∞) and

b′

a′
≥ r2,

then they coincide on (0,∞). A similar result holds if I ⊂ (−∞, 0). If I =
[0, a′] the solutions coincide on (0,∞). A similar result holds if I = [a′, 0].
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b) If r2 < r1 < −1 and two solutions coincide on I = [a′, b′], I ⊂ (0,∞)
and

b′

a′
≥ r2

2

(also if I ⊂ (−∞, 0) and I = [a′, b′] and a′

b′ ≥ r2
2), then they coincide on R. If

0 ∈ I the two solutions coincide on R.
c) If r1 < 1 < r2 two solutions f and g which coincide on [0, a′] and have

the property that f(0) 6= 0, g(0) 6= 0, coincide on R. We have a similar result
for [a′, 0].

Proof. Because the solutions are continuous, we can use the correspond-
ing existence theorems from the previous section.

a) We consider the equation f ◦ f − af(x) + bx = 0 with solutions given
by Theorem 1.6. Let f and g two solutions that coincide on [a′, b′], [a′, b′] ⊂
(0,∞). We shall prove that there exist x0, x1 ∈ [a′, b′] such that the sequence
(xn)n∈Z is that one of Theorem 1.6. We choose x0 = a′ and prove that

[x0r1, x0r2] ⊂
[
a′, b′

]
.

Indeed
x0r1 > a′ ⇔ x0r1 > x0 ⇔ r1 > 1

and
x0r2 < b′ ⇔ b′ > a′r2.

These conditions are fulfilled from the hypothesis. Then, because

(α) r1(x− y) ≤ f(x)− f(y) ≤ r2(x− y)

(the same for g), we can take

f0 = f |[x0,x1] = g|[x0,x1] = g0.

We define (xn)n∈Z as in Theorem 1.6, f0 : [x0, x1] → [x1, x2] is increasing,
bijective and satisfies (α). The same for g0, hence f0 and g0 fulfill the condition
from Theorem 1.6. We shall prove inductively that fn(x) = gn(x) for x ∈
[xn, xn+1], n ≥ 0, where fn and gn are those of Theorem 1.6. We shall prove
that the functions obtained in this way are increasing, bijective, continuous,
and satisfy (α) for all n ≥ 0. Let us suppose fn−1 = gn−1. But

fn(x) = ax− bf−1
n−1(x)

and
gn(x) = ax− bf−1

n−1(x).

Because f−1
n−1 = g−1

n−1 we have fn(x) = gn(x), for all x ∈ [xn, xn+1]. Then
f = g on [xn, xn+1], i.e., f = g on [x0,∞). Let us prove now that f−n = g−n,
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for all n ≥ 0. Assume inductively f−n+1 = g−n+1 (f−n and g−n are those of
Theorem 1.6). But

f−1
−n(x) =

1
b

(ax− f−n+1(x)) for x ∈ [x−n+1, x−n+2]

and
g−1
−n(x) =

1
b

(ax− g−n+1(x)) for x ∈ [x−n+1, x−n+2] .

Because f−n+1 = g−n+1 we have f−1
−n = g−1

−n, hence

f−n(x) = g−n(x) for all x ∈ [x−n, x−n+1] .

Then f−n = g−n, for all n ≥ 0. This means f = g on (0, x0). So f = g
on (0,∞). Similarly, if [a′, b′] ⊂ (−∞, 0), it follows that f = g on (−∞, 0).
Suppose now I = [0, a′]. We take

x1 = a′ and x0 =
a′

r2
.

Obviously, it follows that x0, x1 ∈ I. The proof is similar to the previous one.
The same proof for I = [a′, 0]. Then f = g on (−∞, 0).

b) If r2 < r1 < −1, let us consider the equation

f ◦ f(x) + af(x) + bx = 0

with continuous and decreasing solution which fulfils the condition

(β) −r1(x− y) ≤ f(y)− f(x) ≤ −r2(x− y)

(for x > y). The solutions are given by Theorem 1.7.
Let f , g two solutions that coincide on [a′, b′] ⊂ (0,∞). We shall prove

that there exist

x1, x2 ∈ [a′, b′] such that r2
2x0 ≤ x2 ≤ r2

1x0 and x1 ∈ [r2x0, r1x0]

such that
x2 + ax1 + bx0 = 0.

We choose x0 = a′. But b′ ≥ a′r2
2 ⇒ b′ ≥ x0r

2
2. Because[

x0r
2
1, x0r

2
2

]
⊂ [a′, b′],

we can choose
x2 ∈

[
x0r

2
1, x0r

2
2

]
such that x2 ∈ [a′, b′],

x1 = −bx0 − x2

a
≤ −r1r2x0 − x0r

2
1

− (r1 + r2)
=
−x0r1 (r1 + r2)
− (r1 + r2)

= x0r1.

Similar proof for x1 ≥ x0r2, hence the condition x1 ∈ [x0r2, x0r1] is fulfilled.
Then we can define (xn)n∈Z as in Theorem 1.7. We can consider

f0|[x0,x2] = g0|[x0,x2] = g0
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and
f0, g0 : [x0, x2] → [x3, x1]

fulfil the conditions from Theorem 1.7. Then we can define (fn)n∈Z and (gn)n∈Z
as in Theorem 1.7. They are decreasing, continuous, bijective and satisfy (β).

The functions f1 : [x3, x1] → [x2, x4] and g1 : [x3, x1] → [x2, x4] are given
by the formulas

f1(x) = −ax− bf−1
0 (x), g1(x) = −ax− bg−1

0 (x).

Hence f1 = g1 on [x3, x1].
Now suppose inductively that f2n−1 = g2n−1 on [x2n+1, x2n−1]. We shall

prove that f2n = g2n on [x2n, x2n+2], where

f2n−1, g2n−1 : [x2n+1, x2n−1] → [x2n, x2n+2]

and
f2n, g2n : [x2n, x2n+2] → [x2n+3, x2n+1] .

We know that

f2n(x) = −ax− b · f−1
2n−1(x), g2n(x) = −ax− b · g−1

2n−1(x).

Then it follows that f2n = g2n on [x2n, x2n+2].
In the same way it can be shown that f2n+1 = g2n+1, where

f2n+1, g2n+1 : [x2n+3, x2n+1] → [x2n+2, x2n+4]

and f2n+2 = g2n+2, where

f2n+2, g2n+2 : [x2n+2, x2n+4] → [x2n+5, x2n+3] .

Then fn = gn for all n ≥ 0, i.e., f = g on (−∞, x1] ∪ [x0,∞).
We prove now that f−n = g−n (n ≥ 0). First, we have

f−1
−1 (x) =

1
b

(−ax− f0(x)) , g−1
−1(x) =

1
b

(−ax− g0(x)) ,

where f−1, g−1 : [x1, x−1] → [x0, x2]. Because f0 = g0 on [x0, x2] it follows that
f−1
−1 = g−1

−1 on [x0, x2], so f−1 = g−1 on [x1, x−1]. Now, suppose inductively
that f−2n+1 = g−2n+1 on [x−2n+3, x−2n+1], where

f−2n+1, g−2n+1 : [x−2n+3, x−2n+1] → [x−2n+2, x−2n+4]

and we shall prove that f−2n = g−2n on [x−2n, x−2n+2]. Indeed

f−1
−2n(x) =

1
b

(−ax− f−2n+1(x)) , g−1
−2n(x) =

1
b

(−ax− g−2n+1(x)) ,

where
f−2n : [x−2n, x−2n+2] → [x−2n+3, x−2n+1]

and
g−2n : [x−2n, x−2n+2] → [x−2n+3, x−2n+1] .
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Because f−2n+1 = g−2n+1 on [x−2n+3, x−2n+1] we have

f−1
−2n = g−1

−2n on [x−2n+3, x−2n+1] .

Then f−2n = g−2n on [x−2n, x−2n+2]. Similarly, we can prove that f−2n−1 =
g−2n−1, where

f−2n−1, g−2n−1 : [x−2n+1, x−2n−1] → [x−2n, x−2n+2]

and f−2n−2 = g−2n−2, where

f−2n−2, g−2n−2 : [x−2n−2, x−2n] → [x−2n+1, x−2n−1] .

Thus it follows that f−n = g−n, for all n ≥ 0. Then it follows that f = g on
(x1, 0) ∪ (0, x0). Obviously, f(0) = g(0) = 0 and so f = g.

Let f and g two solutions which coincide on [a′, b′] ⊂ (−∞, 0). We
shall prove that there exist x1, x3 ⊂ [a′, b′] with x3 ∈

[
x1r

2
2, x1r

2
1

]
and x2 ∈

[x1r1, x1r2], respectively

x0 ∈
[
x1

r2
,
x1

r1

]
such that x3 + ax2 + bx1 = 0 and x2 + ax1 + bx0 = 0. We choose x1 = b′.
Because [

b′r2
2, b

′r2
1

]
⊂ [a′, b′],

we can choose
x3 ∈

[
b′r2

2, b′r2
1

]
and then x3 ∈ [a′, b′]. We choose x2 = −x3−bx1

a . We must prove that x2 ∈
[x1r1, x1r2]. But

x2 ≤
−x1r

2
2 − r1r2x1

− (r1 + r2)
=
−x1r2 (r1 + r2)
− (r1 + r2)

= x1r2.

Similarly, we have x2 ≥ x1r1. Choose

x0 =
−ax1 − x2

b
≤ (r1 + r2) x1 − x1r1

r1r2
=

x1

r1
.

Similarly, we have x0 ≥ x1
r2

, hence x1 ∈ [x0r2, x0r1]. So, we can define (xn)n∈Z
like in Theorem 1.7. Let us prove that f = g on [x0, x2]. Denote

f1 = f |[x3,x1] and g1 = g|[x3,x1].

Obviously, f1 = g1. The functions f1, g1 : [x3, x1] → [x2, x4] are continuous,
bijective and fulfill the relationship (β).

We define the function h : [x3, x1] → R (we shall see that one can consider
h : [x3, x1] → [x0, x2])

h(x) = −f1(x) + ax

b
= −g1(x) + ax

b
.
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The function h is continuous; because f1 and g1 fulfill (β). It follows that h
fulfills the relationship

x− y

r1
≤ h(x)− h(y) ≤ x− y

r2
, x > y.

Hence h is decreasing on [x3, x1] and

h(x3) = −f1(x3) + ax3

b
= −x4 + ax3

b
= x2,

h(x1) = −f1(x1) + ax1

b
= −x2 + ax1

b
= x0.

Therefore h : [x3, x1] → [x0, x2] is bijective. Denote

f0 = h−1 and g0 = h−1, f0, g0 : [x0, x2] → [x3, x1] .

It follows that f0 = g0 and obviously

f1(x) = −ax− bf−1
0 (x), g1(x) = −ax− bg−1

0 (x).

It is clear that x0r
2
1 ≤ x2 ≤ x0r

2
2. So, f and g coincide on [x0, x2], where

(xn)n∈Z is defined as in Theorem 1.7. Using the same reasoning as in the
previous case it will follow that f and g coincide on R.

c) If r1 < 1 < r2, we consider the equation

f ◦ f(x)− af(x) + bx = 0

with continuous and increasing solutions given by Theorem 1.8 (case f(x)>x).
Let f and g two solutions which coincide on [0, a′]. It follows from the

hypothesis that f and g have no fixed points. If f(x) > x, for any x ∈ R it
follows that g(x) > x, for any x ∈ R (f and g coincide on [0, a′]). Choose
x1 = a′, x0 = 0. We can define (xn)n∈Z as in Theorem 1.8; xn −→

n
∞ and

x−n −→
n

−∞. We can define f0 and g0 by f0 = f |[0,x1] and g0 = g|[0,x1].

The functions f0, g0 : [0, x1] → [x1, x2] are continuous, bijective and fulfill
(α). Defining (fn)n∈Z as in Theorem 1.8, it will follow that fn are continuous,
bijective and fulfill (α). Similarly to a) one can prove inductively that fn = gn,
for all n ∈ Z. Therefore f = g on R.

We shall prove now that if f and g coincide on [b′, 0], they coincide on R
(where b′ < 0). Let (xn)n∈Z be the sequence which appears in the construction
of the solution in Theorem 1.8. We choose x0 = 0 and x1 = −b · b′, x1 > 0.
Let us prove that f(x) = g(x) for x ∈ [0,−b ·b′]. We have x1−ax0 +bx−1 = 0;
x0 = 0 ⇒ x−1 = b′. Hence, considering (fn)n∈Z and (gn)n∈Z (the functions
which appear in the construction of the solution in Theorem 1.8), we have
f−1 : [x−1, 0] → [0, x1] and g−1 : [x−1, 0] → [0, x1]. It is clear that f−1 = g−1
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implies the fact that f−1
−1 (x) = g−1

−1(x) for x ∈ [0, x1]. But

f−1
−1 (x) = −1

b
(ax + f0(x)) , g−1

−1(x) = −1
b

(ax + g0(x)) ,

where f0 : [0, x1] → [x1, x2], g0 : [0, x1] → [x1, x2]. Hence f0(x) = g0(x),
for all x ∈ [0, x1]. According to the fact which has been proved, it follows
that f = g on R.

The case f(x) < x, for x ∈ R, is similar. �

Remark. Concerning the uniqueness properties of the solutions of a func-
tional equation, the reader may consult the papers [4], [7] and, especially, [6].

3. QUALITATIVE PROPERTIES OF THE SOLUTIONS

In this paragraph, we shall establish that solutions of equation

(E1) f ◦ f(x) + af(x) + bx = 0,

which are monotonous, are also continuous if b 6= 0 and a = 0. We shall look
for conditions in general case such that a monotonous solution of equation (E1)
becomes continuous. At the end of this paragraph, we shall give some topo-
logical properties for the set of the solutions of equation (E1) if a 6= 0, b 6= 0.

A) First, we study the case a = 0 and b 6= 0. So far, we studied only the
continuous solutions of equation (E1). In Theorems 3.1–3.5 one can consider
discontinuous solutions (namely, we give conditions such that monotonous
solutions becomes continuous).

Theorem 3.1. Let us consider equation (E1). Then if a = 0, b 6= 0, every
monotonous solution is also continuous.

Proof. a) If b > 0 the equation becomes f ◦ f(x) = −bx, b > 0. Since f
is monotonous, this equality is absurd.

b) If b < 0 the equation becomes f ◦ f(x) = −bx, −b > 0. Obviously,
−bx is bijective, so f is bijective. Because f is monotonous and bijective it is
continuous. �

B1) Let us consider the case a 6=0, b 6=0. First, we study the case ∆<0.

Theorem 3.2. If the characteristic equation of the functional equation
(E1) has no real roots (so the equation r2 + ar + b = 0 has the discriminant
∆ < 0), then equation (E1) has no monotonous solutions.

Proof. Let us suppose for n contradiction that there exists f monotonous
which satisfies equation (E1). We have ∆ < 0 ⇒ b > 0. Hence −af(x) =
f ◦ f(x) + bx. Next, a < 0 ⇔ f ↑ (i.e., f is increasing). The equation becomes
f ◦ f(x) − af(x) + bx = 0, a, b > 0. Consequently, bx = af(x) − f ◦ f(x) ⇒
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ax−f(x) ↑ on A = Im f . Then, for x > y we have ax−fx > ay−f(y). Hence
f(x)− f(y) < a(x− y) for x > y, x, y ∈ Im f .

Let

B0 =
{

f(x)− f(y)
x− y

∣∣∣∣ (x, y) ∈ R× R, x > y

}
.

B0 is bounded above by a, so there exists λ0 = supB0, λ0 > 0. Hence

f(x)− f(y)
x− y

≤ λ0 for all x > y, x, y ∈ Im f.

Let x > y, x, y ∈ Im f . It follows that f(x), f(y) ∈ Im f

(β)
ff(x)− ff(y)
f(x)− f(y)

= a− b
f(x)−f(y)

x−y

≤ a− b

λ0
.

Write B1 =
{

ff(x)−ff(y)
f(x)−f(y)

∣∣∣ (x, y) ∈ R× R, x > y
}

. Then it is obvious that
B1 ⊂ B0. It is obvious that there exists λ1 = supB1. Since B1 ⊂ B0 ⇒ λ1 ≤
λ0 and λ1 ≥ 0. Taking into account (β) we get

λ1 ≤ a− b

λ0
.

In the same way one can obtain the sets

Bn =
{

fn+1(x)− fn+1(y)
fn(x)− fn(y)

∣∣∣∣ (x, y) ∈ R× R, x > y

}
.

Obviously, Bn ⊂ Bn−1 ⊂ · · · ⊂ B1 ⊂ B0. Then, there exists λn = sup Bn.
Since Bn ⊂ Bn−1 ⇒ λn ≤ λn−1 and λn ≥ 0. But

fn+1(x)− fn+1(y)
fn(x)− fn(y)

= a− b
fn(x)−fn(y)

fn−1(x)−fn−1(y)

⇒

⇒ fn+1(x)− fn+1(y)
fn(x)− fn(y)

≤ a− b

λn−1
⇒ λn ≤ a− b

λn−1
.

Hence it is obvious that the sequence λn is decreasing and all the terms are
positive so it is convergent. Let λ the limit of the sequence. Passing to the
limit in the previous relation we obtain

λ ≤ a− b

λ
⇒ λ2 − aλ + b ≤ 0.

Taking into account that ∆ < 0, this inequality is absurd. Similar proof if
a > 0 ⇔ f ↓ . �

B2) We shall now deal with the case ∆ > 0.
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Theorem 3.3 (Case 0 < r1 ≤ r2). Let f be an increasing function, which
satisfies (E1). If, additionally, for

B0 =
{

f(x)− f(y)
x− y

∣∣∣∣ (x, y) ∈ Im f × Im f, x > y

}
,

B1 =
{

f ◦ f(x)− f ◦ f(y)
f(x)− f(y)

∣∣∣∣ (x, y) ∈ Im f × Im f, x > y

}
we have λ = supB0 = supB1 (if this supremum is bounded), then f is conti-
nuous.

Proof. The equation can be written f ◦ f(x) − af(x) + bx = 0, with
a, b > 0. Hence af(x)− f ◦ f(x) ↑ or ax− f(x) ↑ on A = Im f . Thus

0 ≤ f(x)− f(y)
x− y

≤ a for all x > y, x, y ∈ A.

We write λ = supB0. According to the hypothesis, we have λ = supB1.
Let us suppose that λ > r2. We have

f ◦ f(x)− f ◦ f(y)
f(x)− f(y)

= a− b
f(x)−f(y)

x−y

for all x, y ∈ Im f.

Consequently,
f ◦ f(x)− f ◦ f(y)

f(x)− f(y)
≤ a− b

λ
.

But a − b
λ < λ (λ2 − aλ + b > 0, because λ > r2). This contradicts the fact

that λ = supB1. It follows that λ ≤ r2. Hence

f(x)− f(y)
x− y

≤ r2 for all x > y, x, y ∈ Im f.

Let us suppose for a contradiction that there exists x0, y0 ∈ R with
x0 > y0, such that

f(x0)− f(y0)
x0 − y0

> r2.

Then f(x0), f(y0) ∈ Im f and

f ◦ f(x0)− f ◦ f(y0)
f(x0)− f(y0)

= a− b
f(x0)−f(y0)

x0−y0

> a− b

r2
.

But a− b
r2

= r1 + r2 − r1r2
r2

= r2. Contradiction. Hence

f(x)− f(y)
x− y

≤ r2 for x > y, x, y ∈ R.

This means that f is continuous. �
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Theorem 3.4 (Case r2 ≤ r1 < 0). Let fbe a function which satisfies
(E1). If, additionally the sets B0 and B1 from Theorem 3.3 have the same
infimum (if this infimum is bounded) then f is continuous.

Proof. The functional equation becomes

(E2) f ◦ f(x) + af(x) + bx = 0,

a, b > 0. Obviously, f is decreasing (f ↓). Since −bx = f ◦ f(x) + a · f(x) ⇒
f ◦ f(x) + af(x) ↓. But f ↓⇒ f(x) + ax ↑ on Im f

⇒ f(y)− f(x)
x− y

< a, x, y ∈ Im f, x > y.

Consequently, there exists

λ = sup
{

f(y)− f(y)
x− y

∣∣∣∣ (x, y) ∈ Im f × Im f, x > y

}
.

According to the hypothesis

λ = sup
{

f ◦ f(x)− f ◦ f(y)
f(y)− f(x)

∣∣∣∣ (x, y) ∈ Im f × Im f, x > y

}
.

Hence λ ≤ a and λ > 0.
Let us suppose for a contradiction that λ > −r2. For x, y ∈ Im f ,

f ◦ f(x)− f ◦ f(y)
f(x)− f(y)

= −a− b
f(x)−f(y)

x−y

, x > y.

We write f(x) = u and f(y) = v ⇒ u < v. Hence

f(u)− f(v)
u− v

= −a− b
f(x)−f(y)

x−y

⇒ f(u)− f(v)
v − u

=

= a− b
f(y)−f(x)

x−y

⇒ f(u)− f(v)
v − u

< a− b

λ
.

We have

a− b

λ
< λ,

because λ2 − aλ + b > 0. The inequality

a− b

λ
< λ

contradicts the definition of λ. Hence λ ≤ −r2. Then it follows that

f(y)− f(x)
x− y

≤ −r2 for any x, y ∈ Im f, x > y.
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If there exist x0 > y0, x0, y0 ∈ R, such that

f(y0)− f(x0)
x0 − y0

> −r2,

then obviously f(x0), f(y0) ∈ Im f , f(y0) > f(x0). However, we have

f ◦ f(x0)− f ◦ f(y0)
f(y0)− f(x0)

= a− b
f(y0)−f(x0)

x0−y0

> a− b

−r2
.

But a− b
−r2

= −r2. Contradiction. Hence

f(y)− f(x)
x− y

≤ −r2, for all x, y ∈ R, x > y.

This means that f is continuous on R. �

Theorem 3.5 (Case r1 <0<r2). Let us consider the functional equation

(E3) f ◦ f(x)− af(x)− bx = 0,

with a, b > 0. Then
a) Every decreasing solution is continuous.
b) Let us suppose that there exists an increasing solution f of equa-

tion (E3).
Consider the sets

C0 =
{

f(x)− f(y)
x− y

∣∣∣∣ (x, y) ∈ B ×B, x > y

}
where B = f(Im f),

and

C1 =
{

f ◦ f(x)− f ◦ f(y)
f(x)− f(y)

∣∣∣∣ (x, y) ∈ B ×B

}
.

Let us additionally suppose that if λ1 = inf C0 > −∞ then λ1 = inf C1

and if λ2 = supC0 < ∞ then λ2 = supC1. Then f is continuous.

Proof. a) Let us suppose that f is decreasing. Since f ◦ f is increasing
it follows that af(x) + bx is increasing, so, if x > y, we have

af(x) + bx > af(y) + by ⇒ 0 <
f(y)− f(x)

x− y
<

b

a
.

This shows that f is continuous.
b) Let us suppose that f is increasing. Firstly we shall prove that f(x)−

f(y) = r2(x − y) for all x > y, x, y ∈ f(Im f). Denote A = Im f . Since



17 Properties for the solutions of the equation 43

f ◦ f(x)− af(x) ↑, we have f(x)− ax ↑ on A. Hence for all x > y,

x, y ∈ Im f ⇒ f(x)− f(y)
x− y

≥ a.

f ◦ f(x)− f ◦ f(y)
f(x)− f(y)

= a +
b

f(x)−f(y)
x−y

⇒ f ◦ f(x)− f ◦ f(y)
f(x)− f(y)

≤ a +
b

a
.

Then for all x > y, x, y ∈ f(A), there exist p1 < p2, with p1 > 0, such that

p1 <
f(x)− f(y)

x− y
< p2.

Then λ1 = inf C0 and λ2 = supC0, 0 < λ1 ≤ λ2. Let x, y ∈ B, x > y

f ◦ f(x)− f ◦ f(y)
f(x)− f(y)

= a +
b

f(x)−f(y)
x−y

≤ a +
b

λ1
.

According to the choice of λ2 it is obvious that a + b
λ1
≥ λ2. Anyway we have

f ◦ f(x)− f ◦ f(y)
f(x)− f(y)

= a +
b

f(x)−f(y)
x−y

≥ a +
b

λ2
.

According to the choice of λ1 it follows that a + b
λ2
≤ λ1. Because

a +
b

λ1
≥ λ2

we have aλ1 + b ≥ λ1λ2. Because

a +
b

λ2
≤ λ1

we have aλ2 + b ≤ λ1λ2. Consequently, aλ2 + b ≤ aλ1 + b and thus it follows
that λ2 ≤ λ1. It follows from these facts and from definition of λ1 and λ2 that
λ1 = λ2. Then we have

a +
b

λ
= λ.

Hence λ = r2. Then we have

f(x)− f(y)
x− y

≤ r2,

and
f(x)− f(y)

x− y
≥ r2 for all x > y, x, y ∈ f(A).

This means
f(x)− f(y)

x− y
= r2, x, y ∈ f(A).
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Then, for all x, y ∈ A, x > y,

f(x)− f(y)
x− y

=
b

−a +
(

f◦f(x)−f◦f(y)
f(x)−f(y)

) =
b

−a + r2
.

Hence
f(x)− f(y)

x− y
= r2 for all x, y ∈ A, x > y.

Let x, y ∈ R be such that x > y (obviously f(x) > f(y) and f(x),
f(y) ∈ A). We write f(x) = u and f(y) = v ⇒

⇒ f(x)− f(y)
x− y

=
b

−a +
(

f ◦ f(x)− f ◦ f(y)
f(x)− f(y)

) =
b

−a +
f(u)− f(v)

u− v

,

for u, v ∈ A, u > v,

⇒ f(x)− f(y)
x− y

=
b

−a + r2
= r2 for all x, y ∈ R, x > y.

Hence f(x) = r2x + c, for all x ∈ R. Obviously, f is continuous. �

Remark. We have a similar result in the other case, i.e.,

f ◦ f(x) + af(x)− bx = 0, a, b > 0.

Remark. We are mainly concerned with continuous solutions of our func-
tional equation. Of course, discontinuous solutions do exist.

We shall present an example of discontinuous solutions of equa-
tion (E1).

Assume a, b ∈ Q are such that ∆ > 0 and
√

∆ /∈ Q. Then r1 and r2

belong to the field Q [
√

∆ ]. Let us define f : R → R by

f (x) =

{
r1x if x ∈ Q [

√
∆ ],

r2x if x /∈ Q [
√

∆ ].

a) The function f is continuous only at x = 0.
Indeed, Q [

√
∆ ] and R \ Q [

√
∆ ] are dense in R and the continuity at

some point x 6= 0 would lead to a contradiction.
b) The function f satisfies equation (E1) because x ∈ Q [

√
∆ ] ⇒ r1x ∈

Q [
√

∆ ] and x /∈ Q [
√

∆ ] ⇒ r2x /∈ Q [
√

∆ ].
We end with some topological properties for the set of solutions of the

equation (E1). As usual, we shall write

C(R) = {f : R → R | f continuous} .
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It is well known that C(R) becomes a Fréchet space with the metric

d(f, g) =
∑
n≥1

1
2n

sup
x∈[−n,n]

|f(x)− g(x)|

1 + sup
x∈[−n,n]

|f(x)− g(x)|
,

which generates the topology of uniform convergence on compact sets. If fn →
f in this topology, we shall write fn

u.c.−→ f . From now on, we understand by
solution of equation (E1) a continuous function, which satisfies this functional
equation.

We obtain a general result which holds in all situations:

Theorem 3.6. The set of solutions of the equation

f ◦ f + af(x) + bx = 0

is closed in the space C(R).

Proof. First, let us prove that the function

H : C(R)× C(R) → C(R), H(f, g) = f ◦ g

is a continuous function in C(R). More precisely, we shall prove that if fn
u.c−−→

f and gn
u.c−−→ g then fn ◦ gn

u.c−−→ f ◦ g.
Let K be a compact. We must show that fn ◦ gn → f ◦ g uniformly on

K. Let ε > 0. We must find n(ε) such that for n ≥ n(ε) and x ∈ K one has

(3.1) |(f ◦ g)(x)− (fn ◦ gn)(x)| < ε.

We denote A(x) = |(f ◦ g)(x)− (fn ◦ gn)(x)|. Then for any x ∈ R and n ∈ N
one has

(3.2) A(x) ≤ |(f ◦ g)(x)− (f ◦ gn)(x)|+ |(f ◦ gn)(x)− (fn ◦ gn)(x)| .

First, we shall prove that there exists a compact K0 such that for any n one
has gn(K) ⊂ K0, g(K) ⊂ K0. Because gn

u→ g on K, there exists n1 such that
if n ≥ n1 and x ∈ K one has

(3.3) |g(x)− gn(x)| < 1.

It follows from (3.1) that −1 + g(x) < gn(x) < 1 + g(x). We write K2 = g(K)
and we notice that K2 is also compact.

⇒ gn(x) ∈ [−1 + inf K2, 1 + supK2] for all n ≥ n1 and thus we have

gn(K) ⊂ [−1 + inf K2, 1 + sup K2] = [a, b] for all n ≥ n1.

With this notation we have

(α) gn(K) ⊂ [a, b] , n ≥ n1.
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Obviously, if n ≤ n1 there exist an, bn ∈ R such that gn(K) ⊂ [an, bn]. Then
it follows that

gn(K) ⊂ [min(a1, a2, a3, . . . , an1 , a), max(b1, b2, b3, . . . , bn1 , b)] = K0.

Finally, we have

(3.4) gn(K) ⊂ K0, ∀n ≥ 1.

Next, we shall prove that for ε > 0 there exists n2(ε) such that if n ≥ n2(ε)
and x ∈ K one has

(3.5) |f(g(x))− f(gn(x))| < ε

2
.

Let ε > 0. Because f is uniformly continuous on K0 there exists δ > 0 such
that for u, v ∈ K0, |u− v| < δ it follows that

(3.6) |f(u)− f(v)| < ε

2
.

Because gn
u.c−→ g, for an arbitrary δ > 0 there exists n2(ε) such that for all

n ≥ n2(ε) and x ∈ K one has |g(x)− gn(x)| < δ. From (α) it follows that
g(x), gn(x) ∈ K0 and then from (3.6) for all n ≥ n2(ε) and x ∈ K we have

|f(g(x))− f(gn(x))| < ε

2
.

Now, we shall prove that for ε > 0 there exists n3(ε) such that for all
n ≥ n3(ε) and x ∈ K one has

(3.7) |f(gn(x))− fn(gn(x))| < ε

2
.

Because fn
u.c−→ f , for an arbitrary ε > 0 there exists n3(ε) such that for all

n ≥ n3(ε) and y ∈ K0 one has

|f(y)− fn(y)| < ε

2
.

Obviously for x ∈ K, we have gn(x) ∈ K0 and so we have (3.7). It follows
from (3.2), (3.5) and (3.7) that for an arbitrary ε > 0 there exists n(ε) =
max [n2(ε), n3(ε)] such that for all n ≥ n(ε) and x ∈ K one has

|(f ◦ g)(x)− (fn ◦ gn)(x)| < ε.

Thus it follows that fn ◦ gn → f ◦ g uniformly on K. Therefore,

fn ◦ gn
u.c−−→ f ◦ g,

so H is continuous.
From this one can see that the function F : C(R) → C(R), defined by

F (f) = f ◦ f + af + b1R is continuous.
Then F−1 ({0}) is a closed set, i.e., the set of solutions of equation (E1),

is a closed set. �
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Next, we shall establish some topological properties of the set of solutions
for each significantly case. We shall discuss these properties, depending on the
roots of the characteristic equation associated to the functional equation (E1).

A) The case 1 < r1 < r2.
Let K ⊂ R an arbitrary compact.

Notation. a) S is the set of solutions of the equation f◦f(x)−af(x)+bx =
0 with a, b > 0 (equation (E1)).

b) Let C(K) the space of continuous real functions on a compact K.
Then C(K) is a Banach space with the norm

‖f‖ = sup
x∈K

|f(x)|.

c) SK = {f : K → R | there exists f0 ∈ S such that f(x) = f0(x) for all
x ∈ K}.

Theorem 3.7. The set SK has the following topological properties:
a) SK is equicontinuous;
b) SK is relatively compact in C(K). (The closure is compact.)

Proof. a) We have to prove that for every ε > 0 there exists δε > 0, such
that, if |x− y| < δε ⇒ |f(x)− f(y)| < ε, for every f ∈ SK .

Since f = f0 on K and f0 ∈ S, according to Theorem 1.a, we have for
every x, y ∈ K

(3.8) |f0(x)− f0(y)| ≤ r2|x− y|.
Hence |f(x)− f(y)| ≤ r2|x − y|, for every x, y ∈ K. Then |x− y| < δε ⇒
|f(x)− f(y)| < r2 · δε < ε (see (3.8)). The sufficient condition is

δε <
ε

r2
.

Obviously, δε does not depend on f , so SK is equicontinuous.
b) Now we shall prove that SK is a bounded set. Let f0 ∈ S ⇒ |f0(x)−

f0(0)| ≤ r2|x| (see (3.8). Since f0(0) = 0 we have

(3.9) |f0(x)| ≤ r2|x|.
It is obvious that for f ∈ SK there exists f0 ∈ SK with f0(x)=f(x). Therefore,

(3.10) |f(x)| ≤ r2|x|,
for all x ∈ K. It is obvious that we can find M such that |x| < M for all
x ∈ K (K is compact in R, so it is bounded) ⇒ f(x) ≤ r2M (see (3.10). This
bound is the same for all the functions f ∈ SK . So, according to Arzela-Ascoli
Theorem, SK is relatively compact. �

Next, we shall establish some topological properties of S (in C(R)).
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Theorem 3.8. The set S is a compact set in C(R).

Proof. According to Theorem 3.6 it is enough to prove that S is relatively
compact in C(R). Because C(R) is a metric space, it is enough to prove that
every sequence in S has a Cauchy subsequence. Let Kn = [−n, n]. Obviously

R =
⋃
n≥1

Kn

and Kn ⊂
◦
Kn+1 . According to Theorem 3.7 we have

(3.11) SKn is relatively compact in C(Kn).

Let (fp)p be a sequence in S. According to (3.11), (fp)p furnishes the
sequence

(
fp|Kn

)
p

which has a Cauchy subsequence with respect to the norm
on C(Kn).

Write this subsequence in the form (u1
p)p ⊂ C (R) , hence (u1

p)p is Cauchy
in the seminorm ‖ ‖K1

on C (R) given by the formula

‖f‖K1
= sup

x∈K1

|f(x)| .

Continuing, (u1
p)p furnishes a subsequence (u2

p)p ⊂ (u1
p)p which is Cauchy in

the seminorm ‖ ‖K2
on C (R) , given by the formula

‖f‖K2
= sup

x∈K2

|f(x)| .

Continuing this process, we obtain at step h, the subsequence (uh
p)p of the

preceding sequence which is Cauchy in the seminorm ‖ ‖Kh
given by

‖f‖Kh
= sup

x∈Kh

|f(x)| .

The final step consists in considering the sequence (vp)p given by vp = up
p,

which is Cauchy in any ‖ ‖Kp
for p ≥ 1, and is a subsequence of all (ui

p)p,
i ≥ 1. Then (vp)p is a Cauchy sequence, with respect to the distance d which
exists on C(R). Therefore, S is relatively compact in C(R). Thus it follows
that S is compact in C(R). �

Remark 1. We take a sequence of compact sets Kn ⊂
◦
Kn+1, Kn ⊂ R,

n ≥ 1 and

K =
⋃
n≥1

Kn.



23 Properties for the solutions of the equation 49

Let us denote by C(K) the space of continuous functions defined on K. Then
C(K) is a Fréchet space with the distance

d =
∑
n≥1

1
2n

sup
x∈Kn

|f(x)− g(x)|

1 + sup
x∈Kn

|f(x)− g(x)|
.

Let the topology on C(K) be the topology of uniform convergence on compact
sets. Then, we denote

SK = {f : K → R | there exists f0 ∈ S such that f(x) = f0(x) for all x ∈K}.

It can be proved in the same way that SK is relatively compact in C(K).

Remark 2. The case r2 < r1 < −1 is similar to the previous one.

B) The case r1 < 1 < r2.
Let

K =
⋃
n≥1

Kn

with Kn ⊂
◦
Kn+1, Kn compacts, Kn ⊂ R.

Let us consider S ⊂ C(R), SKn ⊂ C(Kn) and SK ⊂ C(K) with the
same significance as in case A. The difference with respect to the previous
case is that f(0) can take any real value. Therefore SK is no longer relatively
compact in C(K) because SK is no longer a bounded set. (In fact, neither
SKn are no longer bounded sets.)

We shall try to find similar topological properties in this case.

Notations. d) S(K, m) = {f : K → R | there exists f0 ∈ S such that
f(x) = f0(x) for all x ∈ K and f0(0) ∈ [−m, m]}, m ∈ N (S(K, m) ⊂ C(K)
for m ∈ N).

e) S(Kn,m) = {f : Kn → R | there exists f0 ∈ S such that f(x) = f0(x)
for all x ∈ Kn, f0(0) ∈ [−m,m]}, m ∈ N (S(K, m) ⊂ C(Kn) for all m ∈ N).

f) S(m) = {f : R → R | f ∈ S and f(0) ∈ [−m,m]}, m ∈ N.
With this notation we shall prove that SK is the limit of an increasing

sequence of relatively compact sets of C(K). Also we shall prove that SK is
the limit of an increasing sequence of relatively compact sets of C(K).

Lemma 3.9. The sets S(Kn,m) have the following topological properties:
a) S(Kn,m) are bounded sets in C(Kn);
b) S(Kn,m) are relatively compact sets in C(Kn).

Proof. a) Let f ∈ S(Kn,m). Hence there exists f0 ∈ S such that f(x) =
f0(x) and f0(0) ∈ [−m,m] ⇒ r1(x− 0) ≤ f0(x)− f0(0) ≤ r2(x− 0), for every
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x ∈ Kn (see Theorem 1.a)

⇒ f0(x) ≤ r2x + f0(0) ≤ r2x + m,(3.12)

⇒ f0(x) ≥ r1x + f(0) ≥ r1x−m.(3.13)

Since x ∈ Kn we have

(3.14) there exists Mn = supKn and mn = inf Kn.

It follows from (3.12) and (3.14) that f0(x) ≤ r2Mn +m. It follows from
(3.13) and (3.14) that f0(x) ≥ r1mn −m.

These bounds do not depend on f , so S(Kn,m) is a bounded set in C(Kn).
b) The proof of the fact that S(Kn,m) is equicontinuous is the same as

the proof of Theorem 3.7 point a). According to the Theorem of Arzela-Ascoli,
S(Kn,m) is relatively compact in C(Kn). �

Theorem 3.10. Let us consider the sets S(K, m) and SK . Then they
have the following topological properties:

a) The sets S(K, m) are relatively compact in C(K).
b) The set SK is the limit (in the sense of set theory) of an increas-

ing sequence (with respect to the inclusion relation) of relatively compact sets
from C(K).

Proof. a) The proof is analogous to the proof of Theorem 3.8 (see Re-
mark 1).

b) It is obvious that

(3.15) S(K, m) ⊂ SK ,

for all m ∈ N. Also, it is clear that S(K, m) ⊂ S(K, m+1). Hence, the sequence
of sets S(K, m) is increasing (with respect to the inclusion relation). From
(3.15) we have

(3.16)
⋃

m≥1

S(K, m) ⊂ SK .

We shall prove that
SK ⊂

⋃
m≥1

S(K, m).

Let f0 ∈ S such that f = f0 on K with f0(0) ∈ R. There exists m such that
f0(0) ∈ [−m,m]. Then there exists m such that f ∈ S(K, m), so

(3.17) SK ⊂
⋃

m≥1

S(K, m).

It follows from (3.16) and (3.17) that

SK =
⋃

m≥1

S(K, m).
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According to Lemma 3.9, the sets S(K, m) are relatively compact in C(K),
so SK is the limit of an increasing sequence of relatively compact sets from
C(K). �

Consequence 3.11. The set S ⊂ C(R) is the limit (in the sense of set
theory) of an increasing sequence (with respect to the inclusion relation) of
compact sets of C(R).

Proof. We choose Kn = [−n, n]. Obviously,

R =
⋃
n≥1

Kn.

According to Theorem 3.10,

S =
⋃

m≥1

S(m),

and the sets S(m) are relatively compact in C(R). (Obviously, S(m⊂S(m+1).)
It remains to prove that S(m) are closed in C(R).

Let m ∈ N arbitrary taken. Let fp ∈ S(m), fp
u.c−−→ f . We shall prove

that f ∈ S(m). Since fp ∈ S(m) we have fp ∈ S, so

(3.18) f ∈ S

(see Theorem 3.6). Let us prove that f(0) ∈ [−m,m]. Since fp ∈ S(m).
We have

(3.19) −m ≤ fp(0) ≤ m.

Letting p →∞ in (3.19), we get

(3.20) −m ≤ f(0) ≤ m.

It follows from (3.18) and (3.20) that S(m) are closed sets in C(R). Since S(m)
are also relatively compact it follows that S(m) are compact in C(R). �

C) The case 0 < r1 < r2 < 1.
Let us consider the set S ⊂ C(R), where S has the same meaning as in

previous case. First, we shall give a theorem of uniqueness for this case.

Theorem 3.12. Let two solutions of equation (E1) which coincide on
[a′, b′], [a′, b′] ⊂ (0,∞) such that

b′

a′
≥ r2 − r1r2 + r2

1

r2
1

.

Then they coincide on (0,∞).

Proof. Let f and g two solutions which coincide on [a′, b′]. Denote

f1 = f |[a′,b′], g1 = g|[a′,b′].
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Let f1(a′) = c′ and f1(b′) = d′. Then f1 : [a′, b′] → [c′, d′] and g1 : [a′, b′] →
[c′, d′] are bijective, continuous and increasing. It follows from hypothesis that

f−1
1 and g−1

1 coincide on [c′, d′].

We shall prove that

d′ ≥ c′

r1
.

We know (see Theorem 1.a) that

(3.21) r2(x− y) ≥ f1(x)− f1(y) ≥ r1(x− y),

for x, y ∈ [a′, b′] ; x > y. From hypothesis we have b′ ≥ a′
(

r2−r1r2+r2
1

r2
1

)
. Hence

(3.22)
r1b

′

1− r1
≥ a′

(
r2 +

r2
1

1− r1

)
⇒ a′r2 ≤

r2
1

1− r1
(b′ − a′).

We put in (3.21) x = a′ and y = 0. Thus, we obtain

(3.23) f1(a′) ≤ a′r2.

From (3.22) and (3.23) we have

(3.24) f1(a′) ≤
r2
1

1− r1
(b′ − a′).

We put in (3.21) x = b′ and y = a′. Thus, we obtain

(3.25) f1(b′)− f1(a′) ≥ r1(b′ − a′) ⇒ f1(b′) ≥ f1(a′) + r1(b′ − a′).

From (3.24) we obtain

f1(a′) + r1(b′ − a′) ≥ f1(a′)
r1

.

From (3.25) we have

f1(b′) ≥
f1(a′)

r1
, i.e., d′ ≥ c′

r1
.

Obviously, f−1 and g−1 fulfill the equation

bf−1 ◦ f−1(x)− af−1(x) + x = 0.

The second degree equation associated with our functional equation has the
solutions

1
r1

>
1
r2

> 1

and f−1 , g−1 coincide on [c′, d′], with

d′

c′
≥ 1

r1
.
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According to Theorem 3.1 applied for f−1 and g−1, f−1 and g−1 coincide on
(0,∞). Then f and g coincide on (0,∞). �

Remark 3. We have a similar result if [b′, a′] ⊂ (−∞, 0) such that

b′

a′
≥ r2

1 − r1r2 + r2

r2
1

.

Consequence 3.13. Let two solutions of equation (E1) which coincide
on I = [p, q], where p < 0 and q > 0. Then they coincide on R.

In the sequel, we shall make some topological considerations. Let f ∈
S. According to Theorem 1.a, f is a contraction. Hence, it appears a new
phenomenon over the previous cases.

Notation. g) Let J1 ⊂ J2 ⊂ J3 ⊂ · · · ⊂ Jn a sequence of compact

intervals, Jn ⊂ R such that 0 ∈
◦
J1 and Ji ⊂

◦
Ji+1. Write

J = (a1, b1) =
⋃
n≥1

Jn.

Denote by C(J) the space of continuous real functions defined on J .
Next, we take the distance and the topology in the Fréchet space C(J)

as in Remark 1. For this reason we put Kn = Jn and K = J .
C(Jn) has the same meaning as in notation b) by taking K = Jn. On

C(Jn) we consider the norm

‖f‖ = sup
x∈Jn

|f(x)|.

The set C(Jn) with this norm is, obviously, a Banach space. We write also:
h) S(J) = {f : J → R | there exists f0 ∈ S such that f(x) = f0(x) for

all x ∈ J}, S(J) ⊂ C(J);
i) S(Jn) = {f : Jn → R | there exists f0 ∈ S such that f(x) = f0(x) for

all x ∈ Jn}, S(Jn) ⊂ C(Jn).
With this notations we shall prove that S(J) is compact in C(J).

Lemma 3.14. The set S(Jn) has the following properties:
a) S(Jn) is a bounded set in C(Jn).
b) S(Jn) is a relatively compact set in C(Jn).

The proof of this lemma is analogous with the proof of Theorem 3.7.

Theorem 3.15. The set S(J) has the following properties.
a) S(J) is relatively compact in C(J).
b) S(J) is closed in C(J).
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Proof. a) The proof is similar to the proof of Theorem 3.8 (also see
Remark 1).

b) It is obvious that 0 ∈
◦

Jn for all n ≥ 1 and 0 ∈
◦
J . First, we shall

prove that S(Jn) is closed in C(Jn). Now, let us take an arbitrary n ≥ 1. Let
fp ∈ S(Jn) such that fp

u−→
p

f on Jn. Let us prove that f ∈ S(Jn), i.e., one has

to prove that there exists f0 ∈ S such that f = f0 on Jn. In any case there
exists f◦p ∈ S such that f◦p = fp on Jn. We shall prove that for all α ∈ Jn,
f◦p(α) ∈ Jn. According to Theorem 1.a we have

r1(x− 0) ≤ f◦p(x)− f◦p(0) ≤ r2(x− 0).

Thus, if x > 0 we have f◦p(x) ≤ r2x ≤ x ≤ bn, and if x < 0 we have
f◦p(x) ≥ r2x ≥ x ≥ an, so for all α ∈ Jn ⇒ f◦p(α) ∈ Jn. Because f◦p(x) ∈ Jn

for all x ∈ Jn ⇒ f(x) ∈ Jn for x ∈ Jn (Jn is compact). Then, it is possible to
speak about f ◦ f(x) for all x ∈ Jn. Next

(3.26) f◦p ◦ f◦p
u−→ f ◦ f on Jn.

(See also the proof of Theorem 3.6.) Since f◦p is a solution on R we have
f◦p ◦ f◦p(x)− af◦p(x) + bx = 0 for all x ∈ R. Hence

(3.27) lim
p→∞

f◦p ◦ f◦p(x)− af◦p(x) + bx = 0 for all x ∈ Jn.

According to (3.26) and (3.27), f ◦ f(x)− af(x) + bx = 0, for all x ∈ Jn.
Thus it follows that there exists f0 ∈ S, such that f = f0 on Jn. Hence S(Jn)
is closed in C(Jn).

Let us prove now that S(J) is closed in C(J). We have to prove that if
fp ∈ S(J) such that fp

u.c−−→ f on J , then f ∈ S(J). Since fp ∈ S(J) ⇒ fp ∈
S(Jn) for all n ≥ 1. Because S(Jn) is closed and fp

u−→ f on Jn, there exists
f0n ∈ S such that f = f◦n on Jn, for all n ∈ N∗. Then f◦1 = f◦2 = · · · = f◦n
on J1, for all n ∈ N∗.

Now, we take into account that two solutions which coincide on J1 coin-

cide everywhere according to Consequence 3.13. (Obviously we have 0 ∈
◦
J1.)

Consequently, f◦1 = f◦2 = · · · = f◦n on J1 for all x ∈ R. Let x0 ∈ J arbitrary.
There exists n such that x0 ∈ Jn. Hence f(x0) = f◦n(x0) = f◦1(x0). Then
f(x) = f◦1(x) for all x ∈ J ⇒ f ∈ S(J), so S(J) is closed in C(J). �

Finally, we have the following theorems.

Theorem 3.16. S(J) is compact in C(J).

Theorem 3.17. S is compact in C(R).



29 Properties for the solutions of the equation 55

REFERENCES

[1] K. Baron and W. Jarczyk, Recent results on functional equations in a single variable
perspectives and open problems. Aequationes Math. 61 (2001), 2, 1–48.
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Al. I. Cuza Iaşi Mat. VI (2010), 279–310.

[3] T. Gı̂dea, Contributions to the theory of functional equations. Ph. D. Thesis.
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