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1. PROBLEM SETTLEMENT

The purpose of this paper is to study an inverse problem in relation with
a nonlinear parabolic model with application to water infiltration in soils.
Namely, we want to determine the initial condition from the available data
observed for the solution (soil moisture) in a subset of the flow domain.

The mathematical model we consider is that corresponding to the non-
linear saturated-unsaturated infiltration in a porous medium (see [8]), i.e.,

(1)

∂θ

∂t
−∆β∗(θ) +∇ ·K(θ) 3 f in Q,

θ(0, x) = u(x) in Ω,

(K(θ)−∇β∗(θ)) · ν − αβ∗(θ) 3 0 on Σ := (0, T )× Γ,

which is called the original state system. The domain Q = (0, T )×Ω, with Ω
an open bounded subset of RN , N = 1, 2, 3.

The function β∗ is defined as

β∗(θ) :=


∫ θ

0
β(ζ)dζ, θ < θs,

[K∗
s ,∞), θ = θs,

where β has the following properties

lim
θ↗θs

β(θ) = ∞, lim
θ↗θs

∫ θ

0
β(ζ)dζ = K∗

s <∞.
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Here θ is the soil moisture, β represents the diffusion coefficient, K the water
conductivity and θs the saturation value.

The original state system can be written under the abstract form

(2)
dθ
dt

(t) +Aθ(t) = f(t), a.e. t ∈ (0, T ),

θ(0) = u,

where A : D(A) ⊂ V ′ → V ′ is the multivalued operator defined by

(3) 〈Aθ, ψ〉V ′,V =
∫

Ω
(∇η −K(θ)) · ∇ψdx+

∫
Γ
αηψdσ,

for any ψ ∈ V, where η(x) ∈ β∗(θ(x)) a.e. x ∈ Ω and the domain operator is
defined by

(4) D(A) = {θ ∈ L2(Ω); there exists η ∈ V, η(x) ∈ β∗(θ(x)) a.e. x ∈ Ω}.

The existence and uniqueness of the solution to problem (2) was proved
in [3].

We consider a given set of observations for θ(t, x) denoted by θobs(t, x),
on the subset Q0 = (0, T )× Ω0 ⊆ Q (where Ω0 ⊆ Ω), θobs ∈ L2(Q0).

The problem of the initial data identification is expressed in mathe-
matical terms as the cost functional minimization

(P ) min
u∈U

J(u),

for

J(u) =
∫

Ω0

∫ T

0

(
θ(t, x)− θobs(t, x)

)2
dxdt+ µ

∫
Ω
u2(x)dx,

subject to (1) where the admissible set U consists of

(5) U = {u ∈ L∞(Ω); 0 ≤ u ≤ θs} .

The weight µ is used for a greater influence of one of the terms in the func-
tional cost (e.g., µ>1 implies that the control term has a higher importance).

The steps we follow are the setting of the cost functional, proof of the
existence of an optimal pair and determination of the optimality conditions
for the approximating problem.

Theorem 1. Let f ∈ L2(0, T ;V ′). Then (P ) has at least one solution.

Proof. We see that J(u) ≥ 0 for any u ∈ U. Therefore, there exists
d = inf

u∈U
J(u) ≥ 0. We take a minimizing sequence {un}n≥1 ⊂ U, i.e.,

(6) d ≤ J(un) ≤ d+
1
n
, ∀n ≥ 1.
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The above relationship gives

(7) d ≤
∫

Q0

(
θn(t, x)− θobs(t, x)

)2
dxdt+ µ

∫
Ω
u2

ndx ≤ d+
1
n
, ∀n ≥ 1,

where θn is the solution to the Cauchy problem (2) corresponding to un, i.e.,

(8)
dθn

dt
(t) +Aθn(t) = f(t), a.e. t ∈ (0, T ),

θn(0) = un.

As proved in [8], system (8) admits an unique solution θn ∈W 1,2(0, T ;V ′)
∩L2(0, T ;V ), 0 ≤ θn ≤ θs which satisfies the estimate

(9)
∫ T

0
‖θn(t)‖2

V dt+
∫

Ω
j(θn)dx+

∫ T

0
‖ηn(t)‖2

V dt+
∫ T

0

∥∥∥∥dθn

dt
(t)

∥∥∥∥2

V ′
dt ≤ C,

where ηn ∈ β∗(θn) a.e. on Q.
Therefore, we can extract a subsequence still denoted {θn}n≥1 such that

θn → θ∗ weakly in W 1,2(0, T ;V ′) ∩ L2(0, T ;V ),(10)
dθn

dt
→ dθ∗

dt
weakly in L2(0, T ;V ′).(11)

These two weakly convergences lead us to

(12) θn → θ∗ strongly in L2(0, T ;L2(Ω)).

We also have

K(θn) → K(θ∗) strongly in L2(0, T ;V ),(13)

ηn → η∗ weakly in L2(0, T ;V ),(14)

where ηn ∈ β∗(θn) a.e. on Q and η∗ ∈ β∗(θ∗) a.e. on Q (see [5]).
Since un ∈ U, then 0 ≤ un ≤ θs and

(15) un → u∗ weak-star in L∞(Ω).

Using (9) we prove that the sequence {θn(t)}n≥1 is equicontinuous. Let
ε > 0 and consider that δ(ε) > 0 exists such that |t− t′| < δ(ε), for any
0 ≤ t′ < t ≤ T. We compute∥∥θn(t)− θn(t′)

∥∥
V ′ =

∥∥∥∥∫ t

t′

dθn

dτ
(τ)dτ

∥∥∥∥
V ′
≤

∫ t

t′

∥∥∥∥dθn

dτ
(τ)

∥∥∥∥
V ′

dτ(16)

≤ (t− t′)1/2

∥∥∥∥dθn

dτ
(τ)dτ

∥∥∥∥
L2(0,T ;V ′)

< ε,(17)

if δ(ε) ≤ ε
C .

By (9) we also get that ‖θn(t)‖L2(Ω) ≤ C, ∀t ∈ [0, T ].
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Since L2(Ω) is compact in V ′, it follows that the sequence {θn(t)}n≥1 is
compact in V ′, for each t ∈ [0, T ]. We apply Ascoli-Arzelà theorem and obtain
the convergence

(18) θn(t) → θ(t) strongly in V ′, ∀t ∈ [0, T ].

Hence, this relation is also true for t = 0, i.e., θn(0) → θ(0) strongly in V ′.
Relation (15) implies θn(0) = un → u∗ weakly in L2(Ω).
The uniqueness of the limit yields to

(19) θ(0) = u∗ a.e. in Ω.

Now we pass to show that θ∗ is a solution to problem (2) for u replaced
by u∗. This result is obtained by passing to the limit in the following equivalent
form of (2) ∫

Q

(
∂θn

∂t
φ+∇ηn · ∇φ−K(θn)∇φ

)
dxdt =

=
∫

Q
fφdxdt−

∫
Σ
αηnφdσdt, ∀φ ∈ L2(0, T ;V )

and we get ∫
Q

(
∂θ∗

∂t
φ+∇η∗ · ∇φ−K(θ∗)∇φ

)
dxdt =(20)

=
∫

Q
fφdxdt−

∫
Σ
αη∗φdσdt, ∀φ ∈ L2(0, T ;V ),

i.e., θ∗ is the solution to (2) for u = u∗.
We pass to the limit in (7) as n→∞, using the weakly lower semiconti-

nuity, and we obtain

(21) d ≤
∫

Q0

(
θ∗(t, x)− θobs(t, x)

)2
dxdt+ µ

∫
Ω

(u∗)2 dx ≤ d.

Hence J(u∗) = d, which means that the pair (u∗, θ∗) realizes the mini-
mum of the cost functional J. �

2. THE APPROXIMATING CONTROL PROBLEM

Now we introduce the following approximating identification problem

(Pε) min
u∈U

Jε(u),

for

Jε(u) =
∫

Q0

(
θ(t, x)− θobs(t, x)

)2
dxdt+ µ

∫
Ω
u2dx
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subject to the approximating system

(22)

∂θ

∂t
−∆β∗ε (θ) +∇ ·K(θ) = f in Q,

θ(0, x) = ωε(x) in Ω,

(K(θ)−∇β∗ε (θ)) · ν − αβ∗ε (θ) = 0 on Σ,

where β∗ε is a smooth function (e.g., in C3(R)) which approximates β∗ and ωε

is a sequence which approximates u. In particular, it can be constructed using
a mollifier ρε

(23) ωε(x) := u(x) ∗ ρε(x) =
∫

RN

u(x)ρε(x− s)ds.

We have that ωε ∈ C∞(Ω) and ωε → u strongly in L2(Ω) (see [6]).
Consequently, we introduce the associated Cauchy problem

(24)
dθε

dt
(t) +Aεθε(t) = f(t), a.e. t ∈ (0, T ) ,

θε(0) = u,

where Aε : D(A) ⊂ V ′ → V ′ is the single-valued operator defined by

(25) 〈Aεθε, ψ〉V ′,V =
∫

Ω
(∇β∗ε (θε)−K(θε)) · ∇ψdx+

∫
Γ
αβ∗ε (θε)ψdσ,

for any ψ ∈ V and the domain operator

(26) D(Aε) = {θε ∈ L2(Ω); β∗ε (θε) ∈ V }.

Theorem 2 (existence theorem, see [5]). Let f ∈W 1,2(0, T ;L2(Ω)) and
uε ∈ H2(Ω). Then, for each ε > 0, problem (24) has a unique solution

θε ∈W 1,∞(0, T ;L2(Ω)) ∩W 1,2(0, T ;V ) ∩ L∞(0, T ;H2(Ω)),(27)

β∗ε (θε) ∈W 1,∞(0, T ;L2(Ω)) ∩W 1,2(0, T ;V ) ∩ L∞(0, T ;H2(Ω))(28)

which satisfies the estimates

‖θε‖W 1,∞(0,T ;L2(Ω)) + ‖θε‖W 1,2(0,T ;V ) + ‖θε‖L∞(0,T ;H2(Ω)) ≤ C,(29)

‖β∗ε (θε)‖W 1,∞(0,T ;L2(Ω))+‖β
∗
ε (θε)‖W 1,2(0,T ;V )+‖β

∗
ε (θε)‖L∞(0,T ;H2(Ω))≤C.(30)

Theorem 3. Let f ∈ L2(0, T ;V ′). Then problem (Pε) has at least one
solution (u∗ε, θ

∗
ε).

The proof is identical to the one of Theorem 1, just that β∗ is replaced
by the smoother function β∗ε .
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Lemma 4. Let θε be a solution to (24) corresponding to ωε = u ∗ ρε,
u ∈ U. Then,

ωε → u strongly in L2(Ω) as ε→ 0

and there exists a subsequence of {θε} such that

(31) θε → θ weakly in W 1,2(0, T ;V ′) ∩ L2(0, T ;V ), strongly in L2(Q)

and θ is the solution to system (2) corresponding to u.

Proof. We recall that a solution to (24) is a solution in the generalized
sense to (22). Since uε is the function defined by (23) and ωε∈L∞(0, T ;H2(Ω)),
it follows that the approximating problem has a unique strong solution denoted
θε. Then, the proof of (31) follows like in [7]. �

Theorem 5. Let f ∈W 1,2(0, T ;L2(Ω)) and the pair (uε, θε) be a solution
to the approximating problem (Pε). Then,

uε → u∗ weak-star in L∞(Ω),(32)

θε → θ weakly in W 1,2(0, T ;V ′) ∩ L2(0, T ;V ),(33)

where u∗ ∈ U and θ∗ is the solution to the original problem (1) for u = u∗.
Moreover, u∗ is a solution to (P ) and

(34) lim
ε→0

(Pε) = P.

Proof. Let u∗ ∈ U be a solution to (P ) and θε a solution to the appro-
ximating problem (22) for u = u∗. By the optimality pair (uε, θε) in (Pε),
we have∫

Q0

(
θε − θobs

)2
dxdt+ µ

∫
Ω
u2

εdx ≤
∫

Q0

(
θε − θobs

)2
dxdt+ µ

∫
Ω

(u∗)2 dx.

As ε→ 0, by Lemma 4 we have that θε → θ∗ strongly in L2(Q0), where
θ∗ is the solution to system (2) for u = u∗. Hence∥∥∥θ∗ε − θobs

∥∥∥
L2(Q0)

→
∥∥∥θ − θobs

∥∥∥
L2(Q0)

.

For this reason, we have the following inequalities

lim sup
ε→0

[∫
Q0

(
θ∗ε − θobs

)2
dxdt+ µ

∫
Ω

(u∗ε)
2 dx

]
≤(35)

≤ lim sup
ε→0

[∫
Q0

(
θε − θobs

)2
dxdt+ µ

∫
Ω

(u∗)2 dx
]
≤

≤
∫

Q0

(
θ∗ − θobs

)2
dxdt+ µ

∫
Ω

(u∗)2 dx.
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Since {u∗ε}ε≥1 ⊂ U, there exists a subsequence denoted the same way
such that

u∗ε → u∗ weak-star in L∞(Ω).

As shown before, on a subsequence we have that

θ∗ε → θ∗ strongly in L2(Q0) and weakly in W 1,2(0, T ;V ) ∩ L2(0, T, V ′),

where θ∗ is the solution to (2) for u = u∗. This yields to∫
Q0

(
θ∗ − θobs

)2
dxdt+ µ

∫
Ω

(u∗)2 dx ≤(36)

≤ lim inf
ε→0

[∫
Q0

(
θ∗ε − θobs

)2
dxdt+ µ

∫
Ω
(u∗ε)

2dx
]
≤

≤ lim sup
ε→0

[∫
Q0

(
θε − θobs

)2
dxdt+ µ

∫
Ω
(u∗ε)

2dx
]
≤

≤
∫

Q0

(
θ∗ − θobs

)2
dxdt+ µ

∫
Ω

(u∗)2 dx.

By (35) and (36) we get

lim sup
ε→0

[∫
Q0

(
θ∗ε − θobs

)2
dxdt+ µ

∫
Ω
(u∗ε)

2dx
]

=

=
∫

Q0

(
θ∗ − θobs

)2
dxdt+ µ

∫
Ω

(u∗)2 dx = min(P ).

This completes the proof. �

3. NECESSARY CONDITIONS OF OPTIMALITY
FOR THE APPROXIMATING PROBLEM

The next intermediate step is to determine the necessary conditions of
optimality for the problem (Pε) subject to (22). The approximating optimality
conditions are required for the numerical computations, because we cannot
work with the multivalued function β∗ and we use the single-valued β∗ε .

We assume that (u∗ε, θ
∗
ε) is an optimal pair for (Pε). We introduce the

variation of u∗ε

(37) uλ
ε = u∗ε + λvε for vε = w − u∗ε, ∀w ∈ U, λ > 0,

and define Yε = lim
λ→0

θλ
ε−θ∗ε

λ .
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Having introduced these notations, the system in variation reads

(38)

∂Yε

∂t
−∆ (βε(θ∗ε)Yε) +∇ ·

(
K ′(θ∗ε)Yε

)
= 0 in Q,

Yε(0, x) = ωvar
ε (x) := vε(x) ∗ ρε(x) in Ω,

(K ′(θ∗ε)Yε −∇ (βε(θ∗ε)Yε)) · ν − αβε(θ∗ε)Yε = 0 on Σ.

Now we shall give an existence and uniqueness result for the solution to
the system in variations.

Proposition 6. Assume that f ∈ W 1,2(0, T ;L2(Ω)). Then system (38)
has, for each ε > 0, a unique solution

Yε ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ),
dYε

dt
∈ L2(0, T ;V ′).

Proof. We introduce the linear operator AY,ε(t) : V → V ′ by

〈AY,ε(t)φ, ψ〉V ′,V =(39)

=
∫

Ω

(
∇ (βε(θ∗ε)φ) · ∇ψ −K ′(θ∗ε)φ∇ψ

)
dx+

∫
Σ
αβε(θ∗ε)φψdσ, ∀ψ ∈ V

and write the Cauchy problem

dYε

dt
(t) +AY,ε(t)Yε(t) = 0 a.e. t ∈ (0, T ),(40)

Yε(0) = vε.

The proof of Proposition 6 is based on Lions’ theorem (see [2]) and follows
the same steps of Proposition 3.8 in [7]. �

We write the dual system as

(41)

∂pε

∂t
+ βε(θ∗ε)∆pε +K ′(θ∗ε)∇pε = −(θ∗ε − θobs)χΩ0 in Q,

pε(T, x) = 0 in Ω,

αpε +
∂pε

∂ν
= 0 on Σ,

where χΩ0 is the characteristic function of the set Ω0.

Proposition 7. Assume that f ∈ W 1,2(0, T ;L2(Ω)). Then system (41)
has a unique solution

pε ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ),
dpε

dt
∈ L2(0, T ;V ′).

The results of Proposition 7 are obtained by applying Lions’ theorem
(see Proposition 3.9 in [7]).
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The following step consists of determining the approximating dual sys-
tem. For this purpose we multiply the first equation of system (38) by pε, the
solution to the approximating dual system, and integrate the result over Q.
We obtain

−
∫

Q

(
∂pε

∂t
+βε(θ∗ε)∆pε+K ′(θ∗ε)∇pε

)
Yε dxdt+

∫
Ω
pε(T, x)Yε(T, x)dx−(42)

−
∫

Ω
pε(0, x)ωvar

ε (x)dx+
∫

Σ

(
αβε(θ∗ε)pε + βε(θ∗ε)

∂pε

∂ν

)
dσdt = 0.

By (42) we get

(43)
∫

Q
Yε(θ∗ε − θobs)χQ0dxdt =

∫
Ω
pε(0, x)ωvar

ε (x)dx.

The assumption that (θ∗ε , u
∗
ε) is optimal implies J(u∗ε) ≤ J(uλ

ε ). Thus
we have

J(uλ
ε )− J(u∗ε) =

∫
Q0

(
θλ
ε − θ∗ε

)(
θλ
ε + θ∗ε − 2θobs

)
dxdt+

+
∫

Ω
µ
(
uλ

ε − u∗ε
)(
uλ

ε + u∗ε
)
dx.

We divide by λ and pass to the limit for λ→ 0 and taking into account
(37), we obtain

lim
λ→0

J(uλ
ε )− J(u∗ε)
λ

= 2
∫

Q0

Yε

(
θ∗ε − θobs

)
dsdt+

∫
Ω

2µvεu
∗
εds.

Therefore, by (43) we obtain the condition

(44)
∫

Ω
vε(s)

(∫
Ω
ρε(x− s)pε(0, x)dx

)
ds+ µ

∫
Ω

(u∗εvε) (s)ds ≥ 0,

that can be still written

(45)
∫

Ω
vε(s)(Fε + µu∗ε)(s)ds ≥ 0,

where Fε(s) :=
∫
Ω ρε(x−s)pε(0, x)dx. Thus, −(Fε+µu∗ε)∈∂IU

(u∗ε)=N[0,θs](u
∗
ε),

which is the optimality condition.

4. NUMERICAL RESULTS

For solving (1) we used an optimization algorithm based on the gradient
projection method for a restricted minimization problem. For a nonempty
convex, closed set U and a problem of minimizing the functional J : U → R
over U , we have problem (P ) which can be written as:
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Find u ∈ U such that

(P ′) J(u) ≤ J(v), ∀v ∈ U.
An existence result is given by the following theorem.

Theorem 8 (see [1]). Let J be weakly differentiable.
(i) If u∗ ∈ U is optimal, then for any α > 0

(46) PU (u∗ − α∇J(u∗)) = u∗.

(ii) If J is also convex and if there exists α > 0 such that (46) holds,
then u∗ is a solution to problem (P ′).

We performed the numerical results using Rosen’s algorithm (see [1]):

S0. Choose u0 ∈ U and α > 0;
Set k = 0;

S1. uk := PU (uk − α∇J(uk)) ;
vk := uk − uk;

S2. Compute λk ∈ (0, 1] such that
J(uk + λkvk) = min {J(uk + λvk); 0 < λ ≤ 1} ;

S3. uk+1 := uk + λkvk;
S4. The stopping criterion:

If ‖uk+1 − uk‖ < ε
then stop ( uk+1 is the solution)
else k := k + 1; go to S1.

Numerical results are performed for the 2D case with the domain a square
defined by Ω = {(x, y); x ∈ [0, 1], y ∈ [0, 1]}. Γ is the soil boundary and the
other data are

f(t, x, y) = 0.2 exp(−t2), u(x, y) = 0.5.

Other constants used are T = 1, µ = 1, θs = 1, α = 10−8, ε1 = 0.01 and
ε = 0.1.

Assuming that the model (1) is already written in a dimensionless form,
we shall perform numerical tests for

(47) β(θ) =


1

2
√

1− θ
, 0 ≤ θ < θs − ε1,

1
2
√

1− θs + ε1
, θs − ε1 ≤ θ ≤ θs,

(48) β∗(θ)=


1−

√
1− θ, 0 ≤ θ < θs − ε1,

1
2
√

1− θ
(θ − θs + ε1) + 1−

√
1− θs + ε1, θs − ε1 ≤ θ ≤ θs.

In what concerns K we consider it of the form K(θ) = θ2.
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Systems (1) and (41) were solved with Comsol Multiphysyics 3.5a (see [4])
and Matlab (see [9]) for α = 0.1 and 1.

The corresponding values for the solution to problem (P ′), the norm of
∇J and the error at each iteration are presented in Tables 1 to 3.

Table 1
θobs(t, x, y) = 0.5− 0.1y, α = 0.1

Iteration k min
λ∈(0,1]

(Jk
λ)

∥∥∇Jk+1
λ −∇Jk

λ

∥∥ ∥∥uk+1 − uk
∥∥

1 0.23079 39.4934 3.9493

2 0.17478 31.8712 3.1871

3 0.1428 25.0697 2.507

4 0.12587 19.3837 1.9384

5 0.11776 14.8405 1.484

6 0.11451 11.3327 1.1333

7 0.11385 8.7031 0.87031

8 0.11446 6.7231 0.66222

9 0.1156 5.2912 0.51235

10 0.11687 4.2884 0.41171

11 0.11786 3.5145 0.050565

Table 2
θobs(t, x, y) = 0.5− 0.1y, α = 1

Iteration k min
λ∈(0,1]

(Jk
λ)

∥∥∇Jk+1
λ −∇Jk

λ

∥∥ ∥∥uk+1 − uk
∥∥

1 0.085035 39.4934 21.4498

2 0.12184 16.809 2.5213

3 0.11044 9.4706 1.4206

4 0.10837 5.9968 0.89952

5 0.10935 4.3322 0.64945

6 0.11138 3.4552 0.50869

7 0.11358 2.8845 0.41241

8 0.1156 2.4614 0.34175

9 0.1175 2.1184 0.28666

10 0.11923 1.8252 0.24251

11 0.12074 1.5696 0.20593

12 0.12206 1.3452 0.17503

13 0.12321 1.1493 0.14883

14 0.12421 0.979 0.1265

15 0.12508 0.83188 0.10729

16 0.12582 0.70573 0.090954

The smallest error was obtained for the initial guess θobs(t, x, y) = 0.4 +
0.1y and α = 0.1 (see Table 3) for a minimum value of the cost functional of
0.10907, while the method converged in 11 iterations. For a small value of α
(i.e., α = 0.1) we got a decrease in the functional cost (see Table 1), meanwhile
in the other cases J diminishes for a few steps to increase afterwards. For an
α > 5 we couldn’t reach convergence anymore.
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Table 3
θobs(t, x, y) = 0.4 + 0.1y, α = 0.1

Iteration k min
λ∈(0,1]

(Jk
λ)

∥∥∇Jk+1
λ −∇Jk

λ

∥∥ ∥∥uk+1 − uk
∥∥

1 0.21783 39.6873 3.9687

2 0.16368 31.8474 3.1847

3 0.13363 24.9041 2.4904

4 0.11836 19.1396 1.914

5 0.11148 14.5685 1.4568

6 0.10914 11.0583 1.1058

7 0.10907 8.4411 0.84411

8 0.11008 6.4843 0.64558

9 0.1115 5.0516 0.49616

10 0.11293 4.0272 0.39333

11 0.11414 3.3009 0.048447

In Figure 1 we plotted the graphics of θobs(x, y) = 0.5−0.1y, θ computed
and the control u (corresponding to the data in Table 1).

Fig. 1. 3D plots of θobs, the final solution θ11 and the final control u11.
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