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The purpose of the paper is to study the convergence of a linear recurrence with
positive variable coefficients with elements from a Banach space and to estimate
the speed of the convergence. The conditions depend of the sum of the coeffi-
cients and the minimum of the coefficients. In this paper we study the case when
the sequence of the sum of the coefficients is convergent to 1. The results are
first proved for recurrences of real numbers. These results are extended later for
Banach spaces.
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1. INTRODUCTION AND PRELIMINARIES

The aim of the paper is the study of linear recurrences with positive
variable coefficients in Banach spaces (see Definition 1.1 below). The paper
extends the results obtained in [2], where the convergence or the divergence
of the linear recurrence was studied. Here we want to estimate the speed of
the convergence of the linear recurrence.

The Banach spaces will be supposed to be real Banach spaces although
this is not necessary. The results are also valid for complex Banach spaces
because every complex Banach space can be seen as a real Banach space. For
a Banach space X, 0X denotes the identity element of X and for a set A ⊂ X,
〈A〉 denotes the Banach subspace of X generated by A and conv〈A〉 denotes
the convex closure of the set A, that is

convA =
{∑

i=1,n

aixi|x1, x2, . . . , xn ∈ A, a1, a2, . . . , an ∈ [0, 1],
∑

i=1,n

ai = 1
}

.

n, m, k, l, i, j, p denotes natural numbers if we do not say otherwise, δi
j =

=
{

1 if i = j
0 if i 6= j.
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Definition 1.1. Let X be a real normed space and k ≥ 1 be fixed. Let(
an = (a1

n, a2
n, . . . , ak

n)
)
n≥k+1

be a sequence of elements from Rk and (bn)n≥k+1

be a sequence of elements from X. The sequence (xn)n≥1 given by

xn+k = a1
n+kxn+k−1 + a2

n+kxn+k−2 + · · ·+ ak
n+kxn + bn+k

for n ≥ 1 is called the linear recurrence of order k with coefficients (an)n≥k+1,
free terms (bn)n≥k+1 and initial values x1, x2, . . . , xk ∈ X. The sequence is
called homogeneous if bn = 0 for every n ≥ k + 1.

For two sequences of real numbers (an)n≥1 and (bn)n≥1, (an)n≥1 ∼ (bn)n≥1

means that (an)n≥1 is convergent if and only if (bn)n≥1 is convergent.
The infinite series and products are denoted by

∑
n≥1

and
∏

n≥1
.

Notation.
∑

l=m,n

al = 0 and
∏

l=m,n

al = 1 if m > n.

The following lemma is well-known (see [1] or [3]).

Lemma 1.1. For a sequence of real positive numbers (an)n≥1 we have
a)
∏

n≥1
(1 + an) ∼

∑
n≥1

an;

b)
∏

n≥1
(1− an) > 0 ⇔

∑
n≥1

an < ∞ if an < 1 for every n ∈ N∗.

We recall, from [2], the following important remark on homogenous real
linear recurrences with variable coefficients:

Remark 1.1. Let (an)n≥k+1 be a fixed sequence with an ∈ Rk
+ and (xn)n≥1

be the homogeneous linear recurrence of order k associated with the sequence
(an)n≥k+1 with initial values x1, x2, . . . , xk > 0 that is

xn+k = a1
n+kxn+k−1 + a2

n+kxn+k−2 + · · ·+ ak
n+kxn

for n ≥ 1. Then
a) If there exist initial values x1, x2, . . . , xk > 0 such that lim

n→∞
xn = 0,

lim
n→∞

xn = ∞ and respectively (xn)n≥1 is bounded, then for every initial values

x1, x2, . . . , xk (not necessary greater than 0 in the first and the third case)
lim

n→∞
xn = 0, lim

n→∞
xn = ∞ and respectively (xn)n≥1 is bounded.

b) If there exists initial values x1, x2, . . . , xk > 0 such that lim
n→∞

xn ∈

(0,∞), then lim
n→∞

∑
j=1,k

aj
n = 1.

This remark suggested us to divide the problem when xn is real in the
cases lim

n→∞
xn = 0, lim

n→∞
xn = ∞ and (xn)n≥1 is a bounded sequence, in parti-

cular when lim
n→∞

xn ∈ (0,∞). These cases depend on the behavior of the
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sequence
( ∑

j=1,k

aj
n

)
n≥k+1

. In Banach spaces we have similar cases. When
∑

j=1,k

aj
n

is smaller than 1, (xn)n≥1 tends to be convergent to 0, for example when
lim sup

n→∞

∑
j=1,k

aj
n < 1 or when

∑
j=1,k

aj
n < 1 and

∏
n≥k+1

( ∑
j=1,k

aj
n

)
= 0. When∑

j=1,k

aj
n is greater than 1, (xn)n≥1 tends to be divergent, for example when

lim inf
n→∞

∑
j=1,k

aj
n > 1 or when

∑
j=1,k

aj
n > 1 and

∏
n≥k+1

( ∑
j=1,k

aj
n

)
= ∞. In particu-

lar if x1, x2, . . . , xk are in a cone then (‖xn‖)n≥1 tends to be divergent to ∞.
Also when

∑
j=1,k

aj
n is convergent to 1 quickly enough, the sequence (xn)n≥1 is

bounded and if the coefficients are not to small then it is convergent to a limit
which is different from 0 in general. These cases are also valid for inhomoge-
neous linear recurrences. In this paper we will study the last case when the
series

∑
n≥k+1

∣∣∣( ∑
j=1,k

aj
n

)
−1
∣∣∣ is convergent. This case seems to be difficult in the

sense that the calculations are longer than in the other cases. The paper is
divided into 6 sections. The first section is the introduction and the second
one gives some particular cases in which is possible to calculate the general
term. These cases give an idea of what happens in the general case. The third
section contains the study of the real homogenous case when the sum of the
coefficients is 1. The next section contains the study of the general homogenous
case when the sum of the coefficients is 1. The fifth section contains the results
obtained in the general inhomogeneous case when the sum of the coefficients
is 1. The last section contains the general case.

2. PARTICULAR CASES

In this part we will give some particular cases when it is possible to find
the general term of the recurrence. We study first the case k = 1.

Let (an)n≥1 and (bn)n≥1 be sequences of real numbers with an 6= 0 and
let (xn)n≥0 be the sequence given by the linear recurrence

xn+1 = anxn + bn

for n ≥ 0. An inductive calculation shows us that

xn =

( ∏
l=1,n

al

)
x0 +

∑
l=1,n

(( ∏
j=l+1,n

aj

)
bl

)
.
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We remark that (xn)n≥0 is convergent for every x0 if and only if the
product

∏
l≥1

al is convergent and the sequence
∑

l=1,n

(
bl

∏
j=l+1,n

aj

)
is also conver-

gent.
Let us suppose that the series

∑
n≥1

|an − 1| is convergent (this imply that

the product
∏
l≥1

al is convergent and different from 0). Because the convergence

of the product
∏
l≥1

al and of the sequence
∑

l=1,n

(
bl

∏
j=l+1,n

aj

)
does not change

when we change a finite number of terms of the sequence (an)n≥1 (maintaining
the condition an 6= 0) we can suppose also that in this case we have an ∈
(1 − ε, 1 + ε) for an ε > 0. If bn ≥ 0 the sequence (xn)n≥0 is convergent for
every x0 if and only if the series

∑
l≥1

bl is convergent. To see this let us remark

that 0 <
∏

n≥1
(1 − |an − 1|) ≤

∏
j=l+1,n

aj ≤
∏

n≥1
(1 + |an − 1|) < +∞. If the

series
∑
l≥1

|bl| is convergent then (xn)n≥0 is also convergent for every x0. If the

series
∑
l≥1

|bl| is divergent there exists a sequence (an)n≥1 such that (xn)n≥0 is

divergent.
We now study the case k = 2 when the sum of the coefficients is 1.

Lemma 2.1. Let (xn)n≥0 be the sequence of real numbers given by the
linear recurrence

xn+1 = (1− an)xn + anxn−1

for n ≥ 1 where 0 < an < 1. If x1 6= x0 the sequence (xn)n≥1 is convergent if
and only if the product

∏
j≥1

aj is convergent to 0.

Proof. We have

xn+1 − xn = −an(xn − xn−1),

xn+1 − xn = (−1)n(x1 − x0)
∏

l=1,n

al

and

xn+1 = (x1 − x0)

(
1 +

∑
l=1,n

(
(−1)l

∏
j=1,l

aj

))
+ x0.

If the sequence (xn)n≥0 is convergent then the sequence (xn+1 − xn)n≥0

is convergent to 0 and then
∏
j≥1

aj is also convergent to 0.
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If
∏
j≥1

aj is convergent to 0, because 0 < an < 1, the sequence
( ∏

l=1,n

al

)
n≥1

is decreasing to 0 and the series
∑
l≥1

(
(−1)l

∏
j=1,l

aj

)
is convergent (by the Leib-

nitz corollary for alternate series).

Lemma 2.2. Let (xn)n≥0 be the sequence given by the linear recurrence

xn+1 = (1− an)xn + anxn−1 + bn

for n ≥ 1, where 0 < an < 1 and (bn)n≥1 is a sequence of real numbers. Then
a) If the sequence (xn)n≥0 is convergent for every x0 and every x1 then

the product
∏
j≥1

aj is convergent to 0, the sequence
∑

l=1,n

(
(−1)l

( ∏
j=l+1,n

aj

)
bl

)
is convergent and the sequence

( ∑
l=1,n

(−1)lbl

( ∑
j=l,n

(−1)j
( ∏

i=l+1,j

ai

)))
n≥1

is

also convergent.
b) If the product

∏
j≥1

aj is convergent to 0 and the sequence

( ∑
l=1,n

(−1)lbl

( ∑
j=l,n

(−1)j
( ∏

i=l+1,j

ai

)))
n≥1

is convergent then the sequence (xn)n≥0 is convergent for every x0 and
every x1.

c) If the product
∏
j≥1

aj is convergent to 0, the series
∑
j≥1

|bj | is conver-

gent and the sequence
( ∑

j≥n

( ∏
i=n+2,j+1

ai

))
n≥1

is bounded then the sequence

(xn)n≥0 is also convergent for every x0 and every x1.
d) If there is an ε > 0 such that an ≤ 1 − ε for n ≥ 1 and the series∑

j≥1
|bj | and

∑
j≥n+1

( ∏
i=n,j

ai

)
are convergent, then the sequence (xn)n≥1 is also

convergent for every x0 and every x1.

Proof. Let (xn)n≥0 be the sequence given by the linear recurrence

xn+1 = (1− an)xn + anxn−1 + bn

for n ≥ 0 where 0 < an < 1.
Then xn+1 − xn = an(xn−1 − xn) + bn = −an(xn − xn−1) + bn.
If we denote xn+1 − xn by yn then the sequence (yn)n≥0 is defined by

yn = −anyn−1 + bn and y0 = x1 − x0.
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We have yn = (−1)n

[( ∏
l=1,n

al

)
(x1 − x0) +

∑
l=1,n

(
(−1)l

( ∏
j=l+1,n

aj

)
bl

)]
.

Then
xn = x0 +

∑
j=1,n

(xj − xj−1) =

=
∑

j=1,n

(−1)j

[( ∏
l=1,j

al

)
(x1 − x0) +

∑
l=1,j

(
(−1)l

( ∏
i=l+1,j

ai

)
bl

)]
+ x0 =

= (x1 − x0)
∑

j=1,n

(−1)j

( ∏
l=1,j

al

)
+
∑

j=1,n

(∑
l=1,j

(
(−1)l+j

( ∏
i=l+1,j

ai

)
bl

))
+ x0 =

= (x1 − x0)
∑

j=1,n

(−1)j

( ∏
l=1,j

al

)
+
∑
l=1,n

(−1)lbl

( ∑
j=l,n

(−1)j

( ∏
i=l+1,j

ai

))
+ x0.

a) If the sequence (xn)n≥0 is convergent for every x0 and every x1 then
the sequence (yn)n≥0 is convergent for every y0 and from the case k = 1 it

follows that the series
∑

l=1,n

(
(−1)l

( ∏
j=l+1,n

aj

)
bl

)
is convergent and the product∏

j≥1
(−aj) is also convergent. Because 0<an <1 we have

∏
j≥1

aj =0. Taking x0 =

x1 =0 we obtain that the sequence
( ∑

l=1,n

(−1)lbl

( ∑
j=l,n

(−1)j
( ∏

i=l+1,j

ai

)))
n≥1

is also convergent.
b) If the product

∏
j≥1

aj is convergent to 0, then the sequence( ∑
j=1,n

(−1)j

(∏
l=1,j

al

))
n≥1

is also convergent. Taking account that the sequence( ∑
l=1,n

(−1)lbl

( ∑
j=l,n

( ∏
i=l+1,j

ai

)))
n≥1

is convergent, we obtain that the sequence (xn)n≥0 is convergent for every x0

and every x1.

c) Let the sequence
( ∑

j≥n

( ∏
i=n+2,j+1

ai

))
n≥1

be bounded by M > 0. We

have to prove that the sequence
( ∑

l=1,n

(−1)lbl(−1)j

( ∑
j=l,n

( ∏
i=l,j

ai

)))
n≥1

is
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convergent. Let un =
∑

l=1,n

(−1)lbl

( ∑
j=l,n

(−1)j
( ∏

i=l+1,j

ai

))
. Then

|un+1−un|=
∣∣∣(−1)n+1

∑
l=1,n+1

(
(−1)l

( ∏
i=l+1,n+1

ai

)
bl

)∣∣∣≤ ∑
l=1,n+1

( ∏
i=l+1,n+1

ai

)
|bl|

and ∑
n≥1

|un+1 − un| ≤
∑
n≥1

∑
l=1,n+1

( ∏
i=l+1,n+1

ai

)
|bl| =

=
∑
l≥1

|bl|
( ∑

n≥l−1

( ∏
i=l+1,n+1

ai

))
≤ M

∑
l≥1

|bl|.

This imply that the sequence
( ∑

l=1,n

(−1)lbl

( ∑
j=l,n

( ∏
i=l+1,j

ai

)))
n≥1

is

convergent.
d) results from c).

3. THE REAL HOMOGENOUS CASE WHEN THE SUM
OF THE COEFFICIENTS IS 1

In this part we study real homogenous linear recurrence with positive
coefficients when the sum of the coefficients is one.

For a real linear recurrence of order k as in Definition 1.1 let
yn = min{xn, xn−1, . . . , xn−k+1}, n ≥ k,
zn = max{xn, xn−1, . . . , xn−k+1}, n ≥ k,
dn = zn − yn,
mn = min{a1

n, a2
n, . . . , ak

n}, n ≥ k + 1,
ml

n = min{mn,mn−1, . . . ,mn−l+1}, n ≥ k + l
and

mn =mk−1
n , n ≥ 2k − 1.

Lemma 3.1. Let (an)n≥k+1 be a fixed sequence with an ∈ Rk
+ such that

cn =
∑

j=1,k

aj
n = 1. Let (xn)n≥1 be the homogeneous linear recurrence of order

k associated to the sequence (an)n≥k+1 with initial values x1, x2, . . . , xk, that
is xn+k = a1

n+kxn+k−1 + a2
n+kxn+k−2 + · · ·+ ak

n+kxn. Then dn+k−1 ≤ dn(1−
mn+k−1) for every n ≥ k.

Proof. Let yn = min{xn, xn−1, . . . , xn−k+1} and zn = max{xn, xn−1, . . . ,
xn−k+1} for n ≥ k. It is clear that yn ≤ xn+1 ≤ zn. It follows that zn+1 ≤ zn,
yn+1 ≥ yn and dn+1 ≤ dn.
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If mn+k−1 = 0 the result is obvious. So, we can suppose mn+k−1 > 0.
We want to estimate dn+k−1 = zn+k−1 − yn+k−1 = max

i,j=n,n+k−1
|xi − xj |,

where

xn+i = a1
n+ixn+i−1 + a2

n+ixn+i−2 + · · ·+ ak
n+ixn+i−k, i = 1, k − 1,

under the conditions

a1
n+i + a2

n+i + · · ·+ ak
n+i = 1, i = 1, k − 1,

mn+i ≤ a1
n+i, mn+i ≤ a2

n+i, . . . ,mn+i ≤ ak
n+i, i = 1, k − 1,

and
yn ≤ xn+1−i ≤ zn, i = 1, k.

Let us consider the function d̃n+k−1 :
k
×
i=1

[yn, zn] → R defined by

d̃n+k−1(t1, . . . , tk−1, tk) = max
i,j=n,n+k−1

|x̃i(t1, . . . , tk−1, tk)− x̃j(t1, . . . , tk−1, tk)| ,

where x̃i :
k
×
i=1

[yn, zn] → R for i ≥ n − k + 1 are the functions defined such

that x̃i(t1, . . . , tk−1, tk) is the value of the ith term of the linear recurrence if
xn+1−i = ti for i = 1, k that is x̃i are defined inductively by

x̃i(t1, . . . , tk−1, tk) = a1
i x̃i−1(t1, . . . , tk−1, tk)+

+a2
i x̃i−2(t1, . . . tk−1, tk) + · · ·+ ak

i x̃i−k(t1, . . . , tk−1, tk), i ≥ n + 1,

and by
x̃i(t1, . . . , tk−1, tk) = tn+1−i, i = n− k + 1, n.

It is easy to see that x̃i are linear functions. Because |x| = max(x,−x),
d̃n+k−1 is the maximum of a finite family of linear functions defined on a
compact convex set. After the linear programming theory it results that the
maximum is taken into an extreme point of the convex set. So, we can suppose
that xn+1−i = zn or xn+1−i = yn for i = 1, k.

If mn+k−1 > 0 then mn > 0 and yn < xn+1 < zn. Also we have yn ≤
yn+i−1 < xn+i < zn+i−1 ≤ zn for i = 2, k − 1. It follows that dn+k−1 < dn.
Let l be such that dn+l < dn and dn+l−1 = dn. This means that zn+l−1 =
zn+l−2 = · · · = zn and yn+l−1 = yn+l−2 = · · · = yn. Then zn+l < zn or
yn+l > yn. Let us suppose that zn+l < zn. In this case, for j = 1, l

xn+j = a1
n+jxn+j−1 + a2

n+jxn+j−2 + · · ·+ ak
n+jxn+j−k ≤

≤ (1−mn+j)zn+j−1 + mn+jyn+j−1 = (1−mn+j)zn + mn+jyn =
= zn −mn+jdn ≤ zn −mn+k−1dn.
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Also from the assumption that xn+1−i = zn or xn+1−i = yn for i = 1, k it
follows that xn+1−i = yn for i = 1, k − l. If there is an i ∈ {1, 2, . . . , k− l} such
that xn+1−i = zn we should have zn+l = zn. Then zn+l ≤ zn − mn+k−1dn.
Finally,

dn+k−1 ≤ dn+l = zn+l − yn+l ≤ zn+l − yn ≤
≤ zn −mn+k−1dn − yn = dn(1−mn+k−1).

Proposition 3.1. Let (an)n≥k+1 be a fixed sequence with an ∈ Rk
+ and

(xn)n≥1 be the homogeneous linear recurrence of order k associated to the se-
quence (an)n≥k+1 with initial values x1, x2, . . . , xk, that is xn+k = a1

n+kxn+k−1

+a2
n+kxn+k−2 + · · · + ak

n+kxn such that cn =
∑

j=1,k

aj
n = 1. If

∑
n≥k+1

mn = ∞

then the sequence (xn)n≥1 is convergent to a finite limit l and

|xn − l| ≤ dk

∏
l=2,[n−p

k−1 ]

(
1−ml(k−1)+p

)
,

where p ∈ N∗ is fixed and n ≥ p + 2k − 2.

Proof. It is clear that yn ≤ xn+1 = a1
n+kxn+k−1 + a2

n+kxn+k−2 + · · · +
ak

n+kxn ≤ zn. It follows that zn+1 ≤ zn, yn+1 ≥ yn and dn+1 ≤ dn. To prove
the convergence it is enough to prove that dn = zn − yn → 0 when n → ∞
because [yn+1, zn+1] ⊂ [yn, zn].

From Lemma 3.1, dn+k−1 ≤ dn(1−mn+k−1) for every n ≥ k. It follows
for n ≥ 2 that

dn(k−1)+p ≤ dk+p−1

∏
l=2,n

(
1−ml(k−1)+p

)
≤ dk

∏
l=2,n

(
1−ml(k−1)+p

)
.

Because +∞ =
∑
n≥1

mn =
k∑

p=1

(∑
l≥1

ml(k−1)+p

)
there is a p ∈ {1, 2, . . . , k}

such that
∑
l≥1

ml(k−1)+p = +∞. It follows that dn = zn−yn → 0 when n →∞.

Let l = lim
n→∞

xn. Then |xn − l| ≤ dn ≤ d[n−p
k−1 ](k−1)+p and

|xn − l| ≤ dk

∏
l=2,[n−p

k−1 ]

(
1−ml(k−1)+p

)
.

4. THE GENERAL HOMOGENOUS CASE WHEN THE SUM
OF THE COEFFICIENTS IS 1

In this part we study real homogenous linear recurrence in Banach space
with positive coefficients when the sum of the coefficients is one.
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Theorem 4.1. Let (X, ‖ ‖) be a normed space. Let (an)n≥k+1 be a fixed
sequence with an ∈ Rk

+ and (xn)n≥1 ⊂ X be the homogeneous linear re-
currence of order k associated to the sequence (an)n≥k+1 with initial values
x1, x2, . . . , xk ∈ X, such that cn =

∑
j=1,k

aj
n = 1. If

∑
n≥1

mn = ∞ then (xn)n≥1 is

convergent to a limit l ∈ X and ‖xn − l‖ ≤ dk
∏

l=2,[n−p
k−1 ]

(
1−ml(k−1)+p

)
, where

p ∈ N∗ is fixed, n ≥ p + 2k − 2 and dk = max
i,j=1,k

‖xi − xj‖.

Proof. Let us suppose first that X is finite dimensional. Let ϕ : X →
R be a linear function. Then

(
ϕ(xn)

)
n≥1

is the homogeneous linear recur-
rence of order k associated to the sequence (an)n≥k+1 with initial values
ϕ(x1), ϕ(x2), . . . , ϕ(xk) ∈ R. From Proposition 3.1

(
ϕ(xn)

)
n≥1

is convergent
to a finite limit lϕ and

|ϕ(xn)− lϕ| ≤ max
i,j=1,k

|ϕ(xi)− ϕ(xj)|
∏

l=2,[n−p
k−1 ]

(
1−ml(k−1)+p

)
.

Since max
i,j=1,k

|ϕ(xi)− ϕ(xj)| ≤ ‖ϕ‖ max
i,j=1,k

‖xi − xj‖ = ‖ϕ‖ dk we have

|ϕ(xn)− lϕ| ≤ ‖ϕ‖ dk

∏
l=2,[n−p

k−1 ]

(
1−ml(k−1)+p

)
.

Since X is finite dimensional, (xn)n≥1 is convergent to a limit l ∈ X and
ϕ(l) = lϕ for every linear function ϕ : X → R. It follows that

‖xn − l‖ ≤ dk

∏
l=2,[n−p

k−1 ]

(
1−ml(k−1)+p

)
.

This ends the proof in the case of finite dimensional spaces. The case when X is
not finite dimensional can be reduced to the case when X is finite dimensional
because xn ∈ 〈x1, x2, . . . , xk〉 for every n ≥ 1.

Corollary 4.1. Let (X, ‖ ‖) be a normed space. Let (an)n≥k+1 be a
fixed sequence with an ∈ Rk

+ and (xn)n≥1 ⊂ X be the homogeneous linear
recurrence of order k associated to the sequence (an)n≥k+1 with initial values
x1, x2, . . . , xk ∈ X, such that cn =

∑
j=1,k

aj
n = 1. Let Kn = conv〈{xn, xn−1, . . . ,

xn−k+1}〉 for n ≥ k and l be the limit of the sequence (xn)n≥1. Then Kn+1 ⊂
Kn and

⋂
n≥1

Kn = {l}. In particular, we have

‖l‖ ≤ max{‖x1‖, ‖x2‖, . . . , ‖xk‖}.
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Proof. We have xn+1 ∈ Kn and so Kn+1 ⊂ Kn. The rest result from the
convergence of the sequence (xn)n≥1.

5. THE GENERAL INHOMOGENEOUS CASE WHEN
THE SUM OF THE COEFFICIENTS IS 1

The following two lemmas are technical results that give us the possibility
to reduce the inhomogeneous case to the homogenous one.

Lemma 5.1. Let (X, ‖ ‖) be a Banach space. Let f : N → N be an increas-
ing function such that lim

n→∞
f(n) = ∞. Let (x(m)n)n≥1 ⊂ X, (lm)m≥1 ⊂ X for

m ∈ N be sequences of vectors and (dn,m)n≥1 for m ∈ N, (tm)m≥0 be sequences
of positive numbers such that

1)
(
x(m)n

)
n≥1

is convergent to lm;

2)
∑

m≥0
‖lm‖ is convergent ;

3) ‖x(m)n − lm‖ ≤ dn,mtm for m ≤ f(n);
4)
∑

m≥0
tm is convergent ;

5) dn,m → 0 when n →∞ for every m ∈ N;
6) there exists a M > 0 such that dn,m < M for every n, m ∈ N with

m ≤ f(n).
Then the sequence

(
yn =

∑
l=0,f(n)

x(l)n

)
n≥1

is convergent to
∑

m≥0
lm.

Proof. Let ε > 0 be fixed. From 2) and 4) there exists m0 ∈ N and
m1 ∈ N such that m0 ≤ m1,

∑
m≥m0

tm < ε
3M and

∑
m≥m1

‖lm‖ < ε
3 . There

also exists nε ≥ m1 + 1 such that f(nε) ≥ m1 + 1 and for every n ≥ nε,
dn,m ≤ ε

3
∑

m≥0 tm
for m = 0,m0. Then for n ≥ nε we have

‖yn −
∑
m≥0

lm‖ ≤
∑

m≥f(n)+1

‖lm‖+
∑

m=0,f(n)

‖x(m)n − lm‖ ≤

≤
∑

m≥f(n)+1

‖lm‖+
∑

m=0,f(n)

dn,mtm ≤

≤
∑

m≥f(n)+1

‖lm‖+
∑

m=0,m0

dn,mtm +
∑

m=m0+1,f(n)

dn,mtm ≤

≤
∑

m≥m1

‖lm‖+
∑

m=0,m0

dn,m

( ∑
m=0,m0

tm

)
+ M

∑
m=m0+1,f(n)

tm ≤
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≤
∑

m≥m1

‖lm‖+
ε

3
∑

m≥0
tm

∑
m=0,m0

tm + M
∑

m≥m0+1

tm ≤ ε

3
+

ε

3
+

ε

3
= ε.

Notation.
∑

l=m,n

al = 0 and
∏

l=m,n

al = 1 if m > n.

Lemma 5.2. Let (X, ‖ ‖) be a Banach space. Let f : N → N be an increa-
sing function such that lim

n→∞
f(n) = ∞ and f(n) ≤ n. Let (x(m)n)n≥1 ⊂ X

for m ∈ N, (lm)m≥0 ⊂ X be sequences of vectors and (dn,m)n≥1 for m ∈ N,
(tm)m≥0, (cm)m≥1 and (sm)m≥0 be sequences of positive numbers such that

1)
(
x(m)n

)
n≥1

is convergent to lm;
2)
∑

m≥0
sm is convergent ;

3) ‖lm‖ ≤ sm and tm ≤ sm;
4) ‖x(m)n − lm‖ ≤ dn,mtm for m ≤ f(n);
5) dn,m =

∏
l=m+1,f(n)

cl for m ≤ f(n)− 1;

6) cn ∈ (0, 1].
Let (yn)n≥1 be the sequence

( ∑
l=0,f(n)

x(l)n

)
n≥1

. Then the series
∑

m≥0
lm

is convergent and

‖yn−
∑
m≥0

lm‖ ≤ min
m0=0,f(n)

( ∑
m≥m0+1

sm+
( ∏

l=m0+1,f(n)

cl

) ∑
m=0,m0

(
tm

∏
cl

l=m+1,m0

))
≤

≤ min
m0=0,f(n)

( ∑
m≥m0+1

sm +
( ∏

l=m0+1,f(n)

cl

) ∑
m=0,m0

tm

)
≤

≤ min
m0=0,f(n)

( ∑
m≥m0+1

sm +
( ∏

l=m0+1,f(n)

cl

)∑
m≥0

tm

)
.

Proof. Since
∑

m≥0
‖lm‖ ≤

∑
m≥0

sm and the series
∑

m≥0
sm is convergent it

results that the series
∑

m≥0
lm is convergent.

Let n be fixed and m0 be a natural number such that m0 ≤ f(n). As in
the proof of Lemma 5.1, we have

‖yn −
∑
m≥0

lm‖ ≤
∑

m≥f(n)+1

‖lm‖+
∑

m=0,m0

dn,mtm +
∑

m=m0+1,f(n)

dn,mtm.
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Then

‖yn −
∑
m≥0

lm‖ ≤
∑

m≥f(n)+1

sm +
∑

m=0,m0

( ∏
l=m+1,f(n)

cl

)
tm +

∑
m=m0+1,f(n)

sm ≤

≤
∑

m≥m0+1

sm +
( ∏

l=m0+1,f(n)

cl

) ∑
m=0,m0

(
tm

∏
cl

l=m+1,m0

)
≤

≤
∑

m≥m0+1

sm +
( ∏

l=m0+1,f(n)

cl

) ∑
m=0,m0

tm ≤

≤
∑

m≥m0+1

sm +
( ∏

l=m0+1,f(n)

cl

)∑
m≥0

tm.

Because m0 is an arbitrary natural number such that m0 ≤ f(n) we
obtain the desired conclusion.

Remark 5.1. If the conditions from Lemma 5.2 are fulfilled and
∏
l≥1

cl = 0

then the conditions from Lemma 5.1 are also fulfilled.

The following lemma is obvious.

Lemma 5.3. Let (an)n≥k+1 be a fixed sequence with an ∈ Rk
+ and (xn)n≥1

be the homogeneous linear recurrence of order k of real numbers associated to
the sequence (an)n≥k+1 with initial values x1, x2, . . . , xk ∈ R, that is xn+k =
a1

n+kxn+k−1 + a2
n+kxn+k−2 + · · · + ak

n+kxn such that cn =
∑

j=1,k

aj
n = 1. Then

xn ∈ [min{x1, x2, . . . , xk},max{x1, x2, . . . , xk}].

Lemma 5.4. Let (X, ‖ ‖) be a Banach space. Let (an)n≥k+1 be a fixed
sequence with an ∈ Rk

+ and (bn)n≥k+1 be a sequence of elements from X and
(xn)n≥1 be the linear recurrence of order k associated to the sequence (an)n≥1

with initial values x1 = x2 = · · · = xk = 0, that is xn+k = a1
n+kxn+k−1 +

a2
n+kxn+k−2 + · · ·+ak

n+kxn +bn. We suppose that cn =
∑

j=1,k

aj
n = 1 and bn = 0

for n ≥ k + 1. Then

sup
i,j≥1

‖xi − xj‖ ≤
∑

j=1,k

‖bj‖ .

Proof. Let us consider the following linear recurrences (x(l)n)n≥1 for l ∈
{1, 2, . . . , k} defined by x(l)1 = 0, x(l)2 = 0, . . . , x(l)k = 0 for l ∈ {1, 2, . . . , k}
and x(l)n+k = a1

n+kx(l)n+k−1 + a2
n+kx(l)n+k−2 + · · ·+ ak

n+kx(l)n + bn+kδ
l
n+k.

Then xn = x(1)n + x(2)n + · · ·+ x(k)n.
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Also x(l)n = y(l)nbl, where
(
y(l)n

)
n≥1

are the real linear recurrences de-
fined by y(l)1 = 0, y(l)2 = 0, . . . , y(l)k = 0 for l ∈ {1, 2, . . . , k} and y(l)n+k =
a1

n+ky(l)n+k−1 + a2
n+ky(l)n+k−2 + · · ·+ ak

n+ky(l)n + δl
n+k.

It follows that xn =
∑

l=1,k

y(l)nbl. From Lemma 5.3, y(l)n ∈ [0, 1].

The rest is obvious.

Definition 5.1. We denote by A the set of all sequences (an)n≥1 with
an ∈ Rk

+ and cn =
∑

j=1,k

aj
n = 1 for n ≥ k + 1.

Definition 5.2. Let (X, ‖ ‖) be a Banach space. Let b1, b2, . . . , bk be ele-
ments from X. Let (an)n≥1 be an arbitrary sequence with an ∈ Rk

+ and (xn)n≥1

be the linear recurrence of order k associated to the sequence (an)n≥1 with
initial values x1 = x2 = · · · = xk = 0, defined by xn+k = a1

n+kxn+k−1 +
a2

n+kxn+k−2+· · ·+ak
n+kxn+(δ1

nb1+δ2
nb2+· · ·+δk

nbk) such that cn =
∑

j=1,k

aj
n = 1

for n ≥ k. xn depends on the sequence (an)n so we can write xn = xn

(
(an)n

)
.

Let

vm(b1, b2, . . . , bk) = sup
(an)n∈A

(
max

i,j=k+1,m

∥∥xi

(
(an)n

)
− xj

(
(an)n

)∥∥)
for m ∈ N∗ and m ≥ k + 1.

Lemma 5.5. With the notations from the above Definition (5.2) we have
1)

vm(b1, b2, . . . , bk) = sup
(an)n∈A

(
max

i,j=k+1,m

∥∥∥∑
l=1,k

[
yi

(
l, (an)n

)
− yj

(
l, (an)n

)]
bl

∥∥∥),

where
(
ym(l, (an)n)

)
m≥1

are the real linear recurrences defined by

y1

(
l, (am

)
m

) = y2

(
l, (am)m

)
= · · · = yk

(
l, (am)m

)
= 0

for l ∈ {1, 2, . . . , k} and

yn+k

(
l, (am)m

)
= a1

n+kyn+k−1

(
l, (am)m

)
+

+ a2
n+kyn+k−2

(
l, (am)m

)
+ · · ·+ ak

n+kyn

(
l, (am)m

)
+ δl

n+k;

2) vm(b1, b2, . . . , bk) ≤
∑

j=1,k

‖bj‖;

3) vm(b1 + e1, b2 + e2, . . . , bk + ek) ≤ vm(b1, b2, . . . , bk) +
∑

j=1,k

‖ej‖;

4) vm(b1, b2, . . . , bk) ≤ v2k(b1, b2, . . . , bk) for m ≥ 2k.

Proof. 1) It is easy to see that xi

(
(an)n

)
=
∑

l=1,k

yi

(
l, (an)n

)
bl.
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2) and 3) results from the fact that yi

(
l, (an)n

)
∈ [0, 1] (see Lemma 5.3).

4) For m ≥ 2k the recurrence is homogenous and we have

xm+p ∈ conv{xm, xm−1, . . . , xm−k+1} ⊂ conv{x2k, x2k−1, . . . , xk} if p ∈ N∗.

Lemma 5.6. Let (X, ‖ ‖) be a Banach space. Let (an)n≥k+1 be a fixed
sequence with an ∈ Rk

+ and (bn)n≥k+1 be a sequence of elements from X.
Let (xn)n≥1 be the linear recurrence of order k associated to the sequence
(an)n≥k+1 with initial values x1, x2, . . . , xk, that is xn+k = a1

n+kxn+k−1 +
· · · + ak

n+kxn + bn+k such that cn =
∑

j=1,k

aj
n = 1. Let dn = sup

i,j=1,n

‖xi − xj‖.

Then dk +
∑

l=k+1,k+p

‖bl‖ ≥ dk+p, where p ∈ N∗.

Proof. It is enough to give the proof in the case p = 1. The general case
results by induction. We have

dk+1 = max
(
dk, sup

i=1,n

‖xn+1 − xi‖
)

and

‖xn+1 − xi‖ ≤ a1
n+1 ‖xn − xi‖+ a2

n+1 ‖xn−1 − xi‖+ · · ·+

+ak
n+1 ‖x1 − xi‖+ ‖bn+1‖ ≤ dk + ‖bn+1‖ .

It follows that dk+1 ≤ dk + ‖bn+1‖.
The following theorem extends the results of the homogenous case to the

inhomogeneous case when the sum of the coefficients of the linear recurrence
is 1 and it is the main result of this section.

Theorem 5.1. Let (X, ‖ ‖) be a Banach space. Let (an)n≥k+1 be a
fixed sequence with an ∈ Rk

+, (bn)n≥k+1 be a sequence of elements from X
and (xn)n≥1 be the linear recurrence of order k associated to the sequences
(an)n≥k+1 and (bn)n≥k+1 with initial values x1, x2, . . . , xk, that is xn+k =
a1

n+kxn+k−1 + a2
n+kxn+k−2 + · · ·+ ak

n+kxn + bn+k, such that cn =
∑

j=1,k

aj
n = 1.

If
∑

n≥2k−1

mn = ∞ and
∑

n≥k+1

‖bn‖ < ∞ then (xn)n≥1 is convergent to a limit

a ∈ X and

‖xn − a‖ ≤
[n−p

k−1 ]
min
m0=0

( ∑
l≥m0(k−1)+p+1

‖bl‖+
(

dk +
∑
l≥1

rl,p

) [n−p
k−1 ]∏

l=m0+1

(
1−ml(k−1)+p

))

≤
[n−p

k−1 ]
min
m0=0

( ∑
l≥m0(k−1)+p+1

‖bl‖+
(

dk +
∑

l≥k+1

‖bl‖
) [n−p

k−1 ]∏
l=m0+1

(
1−ml(k−1)+p

))
,
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where rl,p = v2k

(
0X , bl(k−1)+p+1, bl(k−1)+p+2, . . . , bl(k−1)+p+k−1

)
, p ∈ N∗ is

fixed, n ≥ p + 2k − 2 and dk = max
i,j=1,k

‖xi − xj‖ .

Proof. The idea of the proof is to decompose the inhomogeneous linear
recurrence (xn)n≥1 into a countable sum of homogenous linear recurrences.
Then using Theorem 4.1 we can estimate the speed of the convergence of these
recurrences. From Lemma 5.1 we obtain the convergence and from Lemma 5.2
we can estimate the speed of the convergence of the inhomogeneous linear
recurrence (xn)n≥1.

It is enough to make the proof only in the case p = 1.
For the general case let us consider the linear recurrence of order k,

(xn)n≥1, associated to the sequences (an)n≥k+1 and (bn)n≥k+1 with initial
values x1, x2, . . . , xk, that is xn+k = a1

n+kxn+k−1+a2
n+kxn+k−2+· · ·+ak

n+kxn+
bn+k, where xn = xn+p−1, aj

n = aj
n+p−1 and bn = bn+p−1. We have cn =∑

j=1,k

aj
n = cn+p−1 = 1. Applying the results of the Theorem to the linear

recurrence (xn)n≥1 for p = 1 and taking account that

dk +
∑

l=k+1,k+p−1

‖bl‖ ≥ dk+p−1 = sup
i,j=1,k+p−1

‖xi − xj‖

(from Lemma 5.6) we can obtain the results of the Theorem for the linear
recurrence (xn)n≥1 for a general p.

Let us consider the sequences (x(l)n)n≥1 for l ∈ N defined by

x(0)n+k = a1
n+kx(0)n+k−1 + a2

n+kx(0)n+k−2 + · · ·+ ak
n+kx(0)n,

x(0)1 = x1, x(0)2 = x2, . . . , x(0)k = xk for l = 0

and

x(l)n+k = a1
n+kx(l)n+k−1 + a2

n+kx(l)n+k−2 + · · ·+ ak
n+kx(l)n+

+bn+k

(
δ
l(k−1)+2
n+k + δ

l(k−1)+3
n+k + · · ·+ δ

(l+1)(k−1)+1
n+k

)
,

x(l)1 = 0, x(l)2 = 0, . . . , x(l)k = 0 for l > 0.

Then xn = x(0)n + x(1)n + · · ·+ x
([

n−2
k−1

])
n
.

From Theorem 4.1 and Corollary 4.1 the sequences
(
x(l)n

)
n≥1

for l ∈ N
are convergent to the limits a(l) such that

‖a(0)‖ ≤
∑
i=1,k

‖xj‖ ,
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‖a(l)‖ ≤
∑

j=l(k−1)+2,(l+1)(k−1)+1

‖bj‖ for l > 0,

‖x(0)n − a(0)‖ ≤ dk

∏
j=2,[n−1

k−1 ]

(
1−mj(k−1)+1

)
for l = 0

and

‖x(l)n − a(l)‖ ≤ v2k

(
0X , bl(k−1)+2, . . . , bl(k−1)+k

) ∏
j=l+1,[n−1

k−1 ]

(
1−mj(k−1)+1

)
for l > 0 and n ≥ (l + 1)(k − 1) + 1.

We can apply Lemma 5.2 with xn as yn,
(
x(m)n

)
n≥1

as
(
x(m)n

)
n≥1

, a(m)
as lm, rl,1 = v2k

(
0X , bl(k−1)+2, bl(k−1)+3, . . . , b(l+1)(k−1)+1

)
as tl for l ≥ 1,

(
1−

ml(k−1)+1

)
as cl, sl =

∑
j=l(k−1)+2,(l+1)(k−1)+1

‖bj‖ as sl for l ≥ 1,
∑

i=1,k

‖xj‖ as s0,

dk as t0 and
[

n−1
k−1

]
for f(n). It results that the series

∑
n≥0

a(n) is convergent and

‖xn − a‖ ≤ min
m0=0,[n−1

k−1 ]

( ∑
l≥m0+1

sl+
(

dk+
∑
l≥1

rl,1

) ∏
l=m0+1,[n−1

k−1 ]

(
1−ml(k−1)+1

))
,

where a =
∑
n≥0

a(n).

The last inequality follows from the fact that (see Lemma 5.5.2))

v2k

(
0X , bl(k−1)+2, bl(k−1)+3, . . . , b(l+1)(k−1)+1

)
≤

∑
j=l(k−1)+2,(l+1)(k−1)+1

‖bj‖ .

It remains us to prove the convergence of the sequence (xn)n≥1. Since

+∞ =
∑
n≥k

mn =
k∑

p=1

(∑
l≥1

ml(k−1)+p

)
there is a p ∈ {1, 2, . . . , k} such that∑

l≥1

ml(k−1)+p = +∞, and so
∏

l≥m0+1

(
1 − ml(k−1)+p

)
= 0 for every m0. From

Remark 5.1 conditions from Lemma 5.1 are also fulfilled. Therefore the con-
vergence results from Lemma 5.1.

6. THE GENERAL INHOMOGENEOUS CASE

The next result is obvious.

Lemma 6.1. Let n ∈ N∗, ε > 0 and a1, a2, . . . , an, a be such that, nε ≤ 1,
ai ≥ ε for i ∈ 1, n, a 6= 0 and a1 + a2 + · · · + an = 1 + a. Then there exists
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b1, b2, . . . , bn such that b1 + b2 + · · · + bn = 1 and bi ≥ ai ≥ ε if a < 0 or
ai ≥ bi ≥ ε if a > 0.

Theorem 6.1. Let (X, ‖ ‖) be a Banach space. Let (an)n≥k+1 be a
fixed sequence with an ∈ Rk

+, (bn)n≥k+1 be a sequence of elements from X
and (xn)n≥1 be the linear recurrence of order k associated to the sequences
(an)n≥k+1 and (bn)n≥k+1 with initial values x1, x2, . . . , xk ∈ X, that is xn+k =
a1

n+kxn+k−1 + a2
n+kxn+k−2 + · · · + ak

n+kxn + bn+k. We suppose that cn =∑
j=1,k

aj
n = 1 + an and

∑
n≥k+1

|an| < ∞. If
∑

n≥k+1

mn = ∞ and
∑

n≥k+1

‖bn‖ < ∞

then (xn)n≥1 is convergent to a limit l ∈ X and

‖xn − l‖ ≤ min
m0=0,[n−p

k−1 ]

(
Am0

p + Bp

∏
l=m0,[n−p

k−1 ]

(
1− m̃l(k−1)+p

))
≤

≤ min
m0=0,[n−p

k−1 ]

(
Am0

p +
(

dk +
∑

l≥k+1

(
‖bl‖+ M |al|

)) ∏
l=m0,[n−p

k−1 ]

(
1− m̃l(k−1)+p

))
,

where p ∈ N∗ is fixed, n ≥ p + 2k − 2,

Am0
p =

∑
l≥m0(k−1)+p+1

(
‖bl‖+ M |al|

)
,

Bp =
(

dk+p−1 +
∑
l≥1

(
rl,p(b) + Msl,p

))
,

M =
∏

j≥k+1

max{1, cj}
(

max
i=1,k

‖xij‖+
∑
l≥1

‖bl‖
)

, m̃n = min
(

1
k
,mn

)
,

rl,p(b) = v2k

(
0X , bl(k−1)+p+1, bl(k−1)+p+2, . . . , bl(k−1)+p+k−1

)
,

dk+p−1 = sup
i,j=1,k+p−1

‖xi − xj‖

and
sl,p =

∑
j=l(k−1)+p+1,(l+1)(k−1)+p

|aj | .

Proof. As in the proof of Theorem 5.1 we can make the proof of the
inequality only in the case p = 1.

We prove first that (xn)n≥1 is bounded.
Let us suppose that X = R and (xn)n≥1 ⊂ R+. Let

yn = min{xn, xn−1, . . . , xn−k+1} for n ≥ k

and
zn = max{xn, xn−1, . . . , xn−k+1} for n ≥ k.
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Then

xn+k = a1
n+kxn+k−1 + a2

n+kxn+k−2 + · · ·+ ak
n+kxn + bn+k ≤

≤a1
n+kzn+k−1+ a2

n+kzn+k−1+ · · ·+ ak
n+kzn+k−1+|bn+k|= cn+kzn+k−1+|bn+k|

and

zn+k ≤ max{xn+k, zn+k−1} ≤
≤ max{cn+kzn+k−1 + |bn+k| , zn+k−1} ≤ zn+k−1 max{1, cn+k}+ |bn+k|.

Now, it is easy to see that

zn ≤ zk

∏
j=k+1,n

max{1, cj}+
∑

i=k+1,n

|bi+1|
( ∏

j=i+1,n

max{1, cj}
)
≤

≤
(

zk +
∑
l≥1

|bl|
) ∏

j=k+1,n

max{1, cj} ≤
(

zk +
∑
l≥1

|bl|
) ∏

j≥k+1

max{1, cj},

where
∏

j=n+1,n

max{1, cj} = 1.

This proves that (xn)n≥1 is bounded by
(
zk +

∑
l≥1

|bl|
) ∏

j≥k+1

max{1, cj}

when X = R and (xn)n≥1 ⊂ R+.
If X = R and (xn)n≥1 ⊂ R, let (x̄n)n≥1 be the homogeneous linear recur-

rence of order k associated to the sequences (an)n≥k+1 ⊂ Rk and (bn)n≥k+1 ⊂
R with initial values x̄1 = |x1|, x̄2 = |x2| , . . . , x̄k = |xk| defined by x̄n+k =
a1

n+kx̄n+k−1 + a2
n+kx̄n+k−2 + · · ·+ ak

n+kx̄n + |bn+k|.
It follows that |xn| ≤ x̄n ≤

(
max
j=1,k

(|xj |) +
∑
l≥1

|bl|
) ∏

j≥k+1

max{1, cj}.

Let X be a Banach space and let ϕ : X → R be a linear and continuous
function with ‖ϕ‖ ≤ 1. Then

(
ϕ(xn)

)
n≥1

is the homogeneous linear recurrence
of order k associated to the sequence (an)n≥k+1 with initial values ϕ(x1), ϕ(x2),
. . . , ϕ(xk) ∈ R; that is ϕ(xn+k) = a1

n+kϕ(xn+k−1) + a2
n+kϕ(xn+k−2) + · · · +

ak
n+kϕ(xn) + ϕ(bn+k).

From the previous, (ϕ(xn))n≥1 is bounded by(
max
j=1,k

(
|ϕ(xj)|

)
+
∑
l≥1

|ϕ(bl)|
)∏

j≥k

max{1, cj} ≤

≤
(

max
j=1,k

(
‖xj‖

)
+
∑
l≥1

‖bl‖
)∏

j≥k

max{1, cj} = M.

From the Hahn-Banach theorem, it follows that the sequence (xn)n≥1 is
bounded in norm by M . Indeed, if there exists xm such that ‖xm‖ > M there
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also exists ϕ : X → R a linear and continuous function such that ‖ϕ‖ = 1 and
‖ϕ(xm)‖ = ‖xm‖ > M , which is a contradiction.

Using Lemma 6.1 when an+k 6= 0 with m̂n+k = min
(

1
k ,mn+k

)
for ε, k for

n, a1
n+k, a

2
n+k, . . . , a

k
n+k, an+k for a1, a2, . . . , an, a we obtain e1

n+k, e
2
n+k, . . . , e

k
n+k

such that e1
n+k + e2

n+k + · · ·+ ek
n+k = 1 and ei

n+k ≥ ai
n+k ≥ m̂n+k if an+k < 0

or ai
n+k ≥ ei

n+k ≥ m̂n+k if an+k > 0. Then

xn+k = a1
n+kxn+k−1 + a2

n+kxn+k−2 + · · ·+ ak
n+kxn + bn+k =

= e1
n+kxn+k−1 + e2

n+kxn+k−2 + · · ·+ ek
n+kxn + dn+k,

where

dn+k = bn+k +
(
a1

n+k − e1
n+k

)
xn+k−1 + · · ·+

(
ak

n+k − ek
n+k

)
xn.

If an+k = 0 we take ai
n+k = ei

n+k and dn+k = bn+k.
In this way we have founded two sequences (en)n≥k+1 with en ∈ Rk

+ and
(dn)n≥k+1 with dn ∈ X such that

∑
j=1,k

ej
n = 1, ej

n ≥ m̂n = min
(

1
k ,mn

)
, ‖dn+k − bn+k‖ ≤ M |an+k|

and

xn+k = e1
n+kxn+k−1 + e2

n+kxn+k−2 + · · ·+ ek
n+kxn + dn+k.

We also have m̃n+k = min
(

1
k ,mn+k

)
= min(m̂n+k, m̂n+k−1, . . . , m̂n+1).

The new recurrence fulfills the conditions from Theorem 5.1. Indeed∑
n≥2k−1

mn = ∞ if and only if
∑

n≥2k−1

m̃n = ∞ and
∑

n≥k+1

‖dn‖ < ∞ since∑
n≥k+1

‖bn‖ < ∞ and
∑
n≥1

|an+k| < ∞.

Let rl(b) = rl,1(b) = v2k(0X , bl(k−1)+2, bl(k−1)+3, . . . , b(l+1)(k−1)+1), sl =
sl,1 =

∑
j=l(k−1)+2,l(k−1)+k

|aj | and rl(d) = rl,1(d) = v2k(dl(k−1)+2, dl(k−1)+3, . . . ,

dl(k−1)+k).
From Lemma 5.5.3) we have rl(d) ≤ rl(b) + Msl and from Lemma 5.5.2)

we have

rl(d) ≤ max
j=l(k−1)+2,(l+1)(k−1)+1

(‖dj‖) ≤ max
j=l(k−1)+2,(l+1)(k−1)+1

(‖bj‖+ Msl).
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From the Theorem 5.1 the sequence (xn)n≥1 is convergent to a limit
l ∈ X and

‖xn − l‖ ≤ min
m0=0,[n−1

k−1 ]

( ∑
l≥m0(k−1)+2

‖dl‖+
(
dk+

∑
l≥1

rl(d)
) [n−p

k−1 ]∏
l=m0+1

(
1−ml(k−1)+1

))

≤ min
m0=0,[n−1

k−1 ]

( ∑
l≥m0(k−1)+2

(
‖bl‖+ M |al|

)
+

+
(

dk +
∑
l≥1

(
rl(b) + Msl

)) ∏
l=m0+1,[n−1

k−1 ]

(
1−ml(k−1)+1

))
≤

≤ min
m0=0,[n−1

k−1 ]

(
Am0

1 +
(

dk+
∑

l≥k+1

(
‖bl‖+M |al|

)) ∏
l=m0+1,[n−1

k−1 ]

(
1−ml(k−1)+1

))
.
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