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We give several sufficient conditions for the existence of weak solutions for the
Dirichlet problem with p(x)-laplacian{

−∆p(x)u = f(x, u) in Ω
u = 0 on ∂Ω,

where Ω is a bounded domain in RN, p(x) a continuous function defined on Ω with

p(x) > 1 for all x ∈ Ω and f : Ω× R → R a Carathéodory function.
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1. INTRODUCTION

The study of Dirichlet problems with p(x)-laplacian is an interesting topic
in recent years. Especially, the special p(x) ≡ p (constant) is the well-known
Dirichlet problem with p-laplacian. There have been a large numbers of papers
on the existence of solutions for p-laplacian equations in a bounded domain.
For example, Dinca et al. ([1], [2]) proved the existence of weak solutions
for the Dirichlet problem with p-laplacian using variational and topological
methods.

In this paper we consider the Dirichlet problem with p(x)-laplacian

(P)
{
−∆p(x)u = f(x, u) in Ω

u = 0 on ∂Ω,

where Ω ⊆ RN is a bounded domain, p : Ω → R a continuous function with
p(x) > 1 for any x ∈ Ω and f : Ω × R → R a Carathéodory function which
satisfies the growth condition inspired by the case p(x) ≡ p (constant). We give
sufficient conditions which allow to use variational and topological methods
in the case of p(x)-laplacian. The results obtained are generalizations of well-
known results for p-laplacian problems.
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2. THE SPACES W
1,p(x)
0 (Ω)

In order to discuss problem (P), we need some properties of the space
W

1,p(x)
0 (Ω), which we call generalized Lebesgue-Sobolev spaces. Define

C+(Ω) =
{
p ∈ C(Ω) | p(x) > 1 for any x ∈ Ω

}
,

p− = min
x∈Ω

p(x), p+ = max
x∈Ω

p(x), p ∈ C+(Ω),

M = {u : Ω → R | u is a measurable real-valued function} ,

Lp(x)(Ω) =
{

u ∈ M |
∫

Ω
|u(x)|p(x) dx < ∞

}
.

Let us introduce in Lp(x)(Ω) the norm

‖u‖p = inf

{
λ > 0 |

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Then
(
Lp(x)(Ω), ‖ ‖p

)
is a reflexive Banach space, call it a generalized Lebesgue

space. On Lp(x)(Ω) we also consider the function ϕp : Lp(x)(Ω) → R defined by

ϕp(u) =
∫

Ω
|u(x)|p(x) dx.

The connection between ϕp and ‖ ‖p is established by the next result.

Proposition 2.1 (Fan and Zhao [3]). a) We have the equivalences

‖u‖p < (>,=)1 ⇐⇒ ϕp(u) < (>,=)1,

‖u‖p = α ⇐⇒ ϕp(u) = α when α 6= 0.

b) If ‖u‖p > 1, then ‖u‖p−
p ≤ ϕp(u) ≤ ‖u‖p+

p . If ‖u‖p < 1, then ‖u‖p+
p ≤

ϕp(u) ≤ ‖u‖p−
p .

c) A ⊆ Lp(x)(Ω) is bounded if and only if ϕp(A) ⊆ R is bounded.
d) For a sequence (un)n∈ ⊆ Lp(x)(Ω) and an element u ∈ Lp(x)(Ω) the

following statements are equivalent:
(1) lim

n→∞
un = u in Lp(x)(Ω);

(2) lim
n→∞

ϕp(un − u) = 0;

(3) un → u in measure in Ω and lim
n→∞

ϕp(un) = ϕp(u);

e) lim
n→∞

‖un‖p = +∞ if and only if lim
n→∞

ϕp(un) = +∞.

Define the space W 1,p(x)(Ω) as

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) | ∃ ∂u

∂xi
∈ Lp(x)(Ω) for all 1 ≤ i ≤ N

}
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and equipp it with the norm ‖u‖W 1,p(x) = ‖u‖p + ‖|∇u|‖p, where |∇u| =√
N∑

i=1

(
∂u
∂xi

)2
.

Denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω) and consider
the function pF : Ω → R defined by

pF(x) =

{
Np(x)

N−p(x) if p(x) < N

+∞ if p(x) ≥ N.

Proposition 2.2 (Fan and Zhao [3]). a) The spaces Lp(x)(Ω), W 1,p(x)(Ω)
and W

1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

b) If q ∈ C+(Ω) and q(x) < pF(x) for any x ∈ Ω, then the imbedding
from W 1,p(x)(Ω) into Lq(x)(Ω) is compact.

c) There is a constant C > 0 such that

‖u‖p ≤ C ‖|∇u|‖p for all u ∈ W
1,p(x)
0 (Ω).

Remark 2.1. By Proposition 2.2 (c), ‖|∇u|‖p and ‖u‖W 1,p(x) are equiva-

lents norms in W
1,p(x)
0 (Ω). Hence from now on we will use the space W

1,p(x)
0 (Ω)

equipped with the norm ‖u‖1,p = ‖|∇u|‖p for all u ∈ W
1,p(x)
0 (Ω).

Remark 2.2. If q ∈ C+(Ω) and q(x) < pF(x) for any x ∈ Ω, then the
imbedding from W

1,p(x)
0 (Ω) into Lq(x)(Ω) is compact.

3. PROPERTIES OF THE p(x)-LAPLACE AND NEMYTSKII OPERATOR

To simplify the notation, we consider the separable and reflexive Banach
space X = W

1,p(x)
0 (Ω) equipped with the norm ‖u‖1,p = ‖|∇u|‖p.

As in the case p(x) ≡ p (constant), we consider the p(x)-laplace operator
−∆p(x) : X → X? defined by〈

−∆p(x)u, v
〉

=
∫

Ω
|∇u|p(x)−2∇u · ∇vdx, u, v ∈ X.

Proposition 3.1 (Fan and Zhao [4]).
a) −∆p(x) : X → X? is a homeomorphism from X into X?.
b) −∆p(x) : X → X? is a strictly monotone operator, that is,〈

(−∆p(x))u− (−∆p(x))v, u− v
〉

> 0, u 6= v ∈ X.

c) −∆p(x) : X → X? is a mapping of type (δ+), i.e., if un ⇀ u in X and
lim sup

n→∞

〈
−∆p(x)un, un − u

〉
≤ 0, then un → u in X.
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Proposition 3.2. The functional Ψ : X → R defined by

Ψ(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx

is continuously Fréchet differentiable and Ψ′(u) = −∆p(x)u for all u ∈ X.

In the last part of this section we recall the basic results on the Nemytskii
operator. If f : Ω × R → R is a Carathéodory function and u ∈ M , then the
function Nfu : Ω → R defined by (Nfu)(x) = f(x, u(x)) is measurable in
Ω. Thus, the Carathéodory function f : Ω × R → R defines an operator
Nf : M → M , which is called the Nemytskii operator.

Proposition 3.3 (Zhao and Fan [7]). Suppose f : Ω × R → R is a
Carathéodory function and satisfies the growth condition

|f(x, t)| ≤ c |t|
α(x)
β(x) + h(x), x ∈ Ω, t ∈ R,

where α, β ∈ C+(Ω), c ≥ 0 is constant and h ∈ Lβ(x)(Ω). Then Nf (Lα(x)(Ω)) ⊆
Lβ(x)(Ω). Moreover, Nf is continuous from Lα(x)(Ω) into Lβ(x)(Ω) and maps
bounded set into bounded set.

For a function α ∈ C+(Ω), we recall that β ∈ C+(Ω) is its conjugate
function if 1

α(x) + 1
β(x) = 1 for all x ∈ Ω.

Concerning the Nemytskii operator, we have

Proposition 3.4. Suppose f : Ω × R → R is a Carathéodory function
and satisfies the growth condition

|f(x, t)| ≤ c |t|α(x)−1 + h(x), x ∈ Ω, t ∈ R,

where c ≥ 0 is constant, α ∈ C+(Ω), h ∈ Lβ(x)(Ω) and β ∈ C+(Ω) is the
conjugate function of α. Let F : Ω× R → R be defined by

F (x, t) =
∫

Ω
f(x, s)ds.

Then
(i) F is a Carathéodory function and there exist a constant c1 ≥ 0 and

σ ∈ L1(Ω) such that

|F (x, t)| ≤ c1 |t|α(x) + σ(x), x ∈ Ω, t ∈ R;

(ii) the functional Φ : Lα(x)(Ω) → R defined by Φ(u) =
∫
Ω F (x, u(x))dx

is continuously Fréchet differentiable and Φ′(u) = Nf (u) for all u ∈ Lα(x)(Ω).

Remark 3.1. If in the growth condition we take α ∈ C+(Ω) and α(x) <

pF(x) for any x ∈ Ω, the imbedding X ↪→ Lα(x)(Ω) is compact. Hence the
diagram

X
I

↪→ Lα(x)(Ω)
Nf→ Lβ(x)(Ω)

I?

↪→ X?
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shows that Nf : X → X? is strongly continuous on X.

Moreover, using the same argument, we can show that the functional
Φ : X → R defined by Φ(u) =

∫
Ω F (x, u(x))dx is strongly continuous on X

and Φ′(u) = Nf (u) for all u ∈ X.

4. EXISTENCE OF SOLUTIONS BY A VARIATIONAL METHOD

Let the functional H : X → R defined by

H(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx−
∫

Ω
F (x, u(x))dx.

The results from Section 3 show that H is a C1 functional on X and

H ′(u) = (−∆p(x))(u)−Nf (u), u ∈ X.

We recall that u ∈ X is a weak solution for problem (P) if and only if∫
Ω
|∇u|p(x)−2∇u · ∇vdx =

∫
Ω

f(x, u(x))dx, v ∈ X.

It is now obvious that u ∈ X is a weak solution for problem (P) if and
only if H ′(u) = 0. The main tool in searching critical points of H is the
“Symmetric Mountain Pass Lemma” (see Willem [6], Theorem 6.5) below.

Theorem 4.1. Suppose X is an infinite dimensional real Banach space
such that X = V ⊕W , where V is a finite dimensional subspace of X and W
is a subspace of X. Let H ∈ C1(X, R) be even and satisfy the (PS) condition
and H(0) = 0. Assume that

(i) there are constants ϕ, γ > 0 such that H(x) ≥ γ for all x ∈ V with
‖x‖ = ϕ;

(ii) for each finite dimensional subspace Y of X there is R > 0 such that
H(x) ≤ 0 for all x ∈ Y with ‖x‖ ≥ R.

Then H has an unbounded sequence of positive critical values.

In this section we shall work under the hypotheses

(1.1) p+ = max
x∈Ω

p(x) < pF
− = inf

x∈Ω
pF(x),

(1.2) f(x,−t) = −f(x, t), x ∈ Ω, t ∈ R,

(1.3) |f(x, t)| ≤ c |t|α(x)−1 + h(x), x ∈ Ω, t ∈ R,

where c ≥ 0 is constant, α ∈ C+(Ω) with α(x) < pF(x) for all x ∈ Ω,
h ∈ Lβ(x)(Ω) and β ∈ C+(Ω) is the conjugate function of α;

(1.4) 0 < θF (x, t) ≤ tf(x, t)
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for x ∈ Ω, t ∈ R with |t| ≥ M, where M > 0 and θ ∈ ( p+, pF
− );

(1.5) α+ < p−.

Definition 4.1. We say that the C1-functional H : X → R satisfies the
(PS) condition if any sequence (un)n∈N ⊆ X for which (H(un))n∈N ⊆ R is
bounded and H ′(un) → 0 as n →∞, has a convergent subsequence.

We have the result below.

Proposition 4.1. Assume (1.4). Then the functional H : X → R satis-
fies the (PS) condition.

Proof. Let the sequence (un)n∈N ⊆ X be such that (H(un))n∈N ⊆ R
is bounded and H ′(un) → 0 as n → ∞. Then there exists d ∈ R such that
H(un) ≤ d for all n ∈ N. For each n ∈ N denote

Ωn = {x ∈ Ω | |un(x)| ≥ M} , Ω′n = Ω�Ωn.

Without any loss of generality, we can suppose that M ≥ 1.
If x ∈ Ω′n then |un(x)| < M and, by Proposition 3.4 (i),

F (x, un) ≤ c1 |un(x)|α(x) + σ(x) ≤ c1M
α+ + σ(x),

hence

(1)
∫

Ω′
n

F (x, un)dx ≤
∫

Ω′
n

(c1M
α+ + σ(x))dx ≤

∫
Ω
(c1M

α+ + σ(x))dx =

= c1M
α+meas(Ω) +

∫
Ω

σ(x)dx = k1.

If x ∈ Ωn then |un(x)| ≥ M and, by (1.4),

F (x, un) ≤ 1
θ
f(x, un(x))un(x)

which gives

(2)
∫

Ωn

F (x, un)dx ≥ 1
θ

∫
Ωn

f(x, un(x))un(x)dx =

=
1
θ

(∫
Ω

f(x, un(x))un(x)dx−
∫

Ω′
n

f(x, un(x))un(x)dx

)
.

By the growth condition (1.4), we have∣∣∣∣∣
∫

Ω′
n

f(x, un(x))un(x)dx

∣∣∣∣∣ ≤
∫

Ω′
n

(
c |un(x)|α(x) + h(x) |un(x)|

)
dx ≤

≤ cMα+meas(Ω′n) + M

∫
Ω′

n

h(x)dx ≤ cMα+meas(Ω) + M

∫
Ω

h(x)dx = k2,
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which yields

(3) −1
θ

∫
Ω′

n

f(x, un(x))un(x)dx ≤ k2

θ
.

We have

(4)
∫

Ω

1
p(x)

|∇un|p(x) dx ≤ d +
∫

Ωn

F (x, un(x))dx +
∫

Ω′
n

F (x, un(x))dx ≤

≤ d + k1 +
∫

Ωn

F (x, un(x))dx.

By (1), (2), (3) and (4), we get

(5)
∫

Ω

1
p(x)

|∇un|p(x) dx− 1
θ

∫
Ω

f(x, un(x))un(x)dx ≤ k,

where k = d + k1 + k2
θ .

On the other hand, because H ′(un) → 0 as n →∞, there is n0 ∈ N such
that ‖H ′(un)‖ ≤ 1 for n ≥ n0. Consequently, for all n ≥ n0 we have〈

H ′(un), un

〉
≤ ‖un‖1,p

or
|ϕp(|∇un|)− 〈Nfun, un〉| ≤ ‖un‖1,p ,

which gives

(6) −1
θ
〈Nfun, un〉 ≥ −1

θ
‖un‖1,p −

1
θ
ϕp(|∇un|).

It follows from (5) and (6) that

(7)
(

1
p+

− 1
θ

)
ϕp(|∇un|)−

1
θ
‖un‖1,p ≤ k, n ≥ n0.

Consider the sets

A = {n ∈ N | n ≥ n0 and ‖un‖1,p ≤ 1}

and
B = {n ∈ N | n ≥ n0 and ‖un‖1,p > 1} .

It is obvious that the sequence (un)n∈A ⊆ X is bounded. If n ∈ B, then
‖un‖1,p > 1 and we have the inequality

(8) ϕp(|∇un|) ≥ ‖un‖p−
1,p .

Finally, by (7) and (8) we have(
1
p+

− 1
θ

)
‖un‖p−

1,p −
1
θ
‖un‖1,p ≤ k, n ∈ B.
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We know that θ > p− and the last inequality shows that the sequence
(un)n∈N ⊆ X is bounded. By the Smuljan theorem, we can extract a subse-
quence (unk

)k∈N of (un)n∈N weakly convergent to some u ∈ X. As H ′(unk
) →

0, we get

(9) lim
k→∞

〈
H ′(unk

), unk
− u
〉

= 0.

The Nemytskii operator Nf is strongly continuous, so that lim
k→∞

Nf (unk
) =

Nf (u) in X∗ and the weak convergence unk
⇀ u in X yields

(10) lim
k→∞

〈Nfunk
, unk

− u〉 = 0.

From (9) and (10) we conclude that

lim
k→∞

〈
−∆p(x)unk

, unk
− u
〉

= 0

which, together with Proposition 3.1(iii), shows that unk
→ u in X. �

Proposition 4.2. Suppose that the Carathéodory function f : Ω×R → R
satisfies hypotheses (1.3), (1.4) while the function p ∈ C+(Ω) satisfies hy-
pothesis (1.1). If V is a finite dimensional subspace of X, then the set S =
{u ∈ V | H(u) > 0} is bounded in X.

Proof. We claim (see [1], Theorem 2.6) that there exists γ ∈ L∞(Ω),
γ > 0, such that F (x, t) ≥ γ(x) |t|θ for x ∈ Ω, |t| ≥ M.

Consider the sets

Ω1 = {x ∈ Ω | |u(x)| < M} , Ω2 = Ω \ Ω1.

Using an argument similar to that in the proof of Proposition 4.1, we get a
constant k1 ≥ 0 such that

∣∣∣∫Ω1
F (x, u)dx

∣∣∣ ≤ k1. Then

(11) H(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx−
(∫

Ω1

F (x, u)dx +
∫

Ω2

F (x, u)dx

)
≤

≤ 1
p−

ϕp(|∇u|)−
∫

Ω2

F (x, u)dx + k1 ≤
1
p−

ϕp(|∇u|)−
∫

Ω2

γ(x) |u(x)|θ dx + k1.

On the other hand,

(12)
∫

Ω2

γ(x) |u(x)|θ dx =
∫

Ω
γ(x) |u(x)|θ dx−

∫
Ω1

γ(x) |u(x)|θ dx ≥

≥
∫

Ω
γ(x) |u(x)|θ dx−M θ

∫
Ω1

γ(x)dx ≥

≥
∫

Ω
γ(x) |u(x)|θ dx−M θ ‖γ‖∞meas(Ω).



9 Dirichlet problem with p(x)-laplacian 51

From (11) and (12) we conclude that

(13) H(u) ≤ 1
p−

ϕp(|∇u|)−
∫

Ω
γ(x) |u(x)|θ dx + k,

where k = M θ ‖γ‖∞meas(Ω) + k1.
The function ‖ ‖γ : x → R defined by

‖u‖γ =
(∫

Ω
γ(x) |u(x)|θ dx

) 1
θ

is a norm on X. On the finite dimensional subspace V the norms ‖ ‖1,p and
‖ ‖γ are equivalent, so there is a constant α > 0 such that

(14) ‖u‖1,p ≤ α ‖u‖γ , u ∈ V .

It is obvious that S ∩ {u ∈ V | ‖u‖1,p < 1} is bounded in X. Choose
u ∈ S ∩ {u ∈ V | ‖u‖1,p ≥ 1}. Then, by (13) and (14), we have

H(u) ≤ 1
p−

ϕp(|∇u|)− ‖u‖θ
γ + k ≤

≤ 1
p−

‖u‖p+

1,p − ‖u‖
θ
γ + k ≤ αp+

p−
‖u‖p+

γ − ‖u‖θ
γ + k.

Therefore
αp+

p−
‖u‖p+

γ − ‖u‖θ
γ + k > 0

for all u ∈ S ∩ {u ∈ V | ‖u‖1,p ≥ 1}. Taking into account that θ > p+, we
conclude that the set S is bounded in X. �

Proposition 4.3. Assume (1.3) and (1.5). Then there exist constants
ρ, γ > 0 such that H |‖u‖1,p=ρ≥ γ.

Proof. In the present context we have the inequalities

H(u) ≥ 1
p+

ϕp(|∇u|)−
∫

Ω
F (x, u)dx

and ∣∣∣∣∫
Ω

F (x, u)dx

∣∣∣∣ ≤ aϕα(u) + b ‖u‖1,p

for any u ∈ X, where a, b ≥ 0 are two constants depending on the numbers
c, α−, ‖h‖β , β− which appear in (1.3). Clearly,

H(u) ≥ 1
p+

ϕp(|∇u|)− aϕα(u)− b ‖u‖1,p , u ∈ X,
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taking into account that ϕp(|∇u|) ≥ ‖u‖p
1,p for all u ∈ X with ‖u‖1,p > 1,

we obtain

(15) H(u) ≥ 1
p+

‖u‖p
1,p − aϕα(u)− b ‖u‖1,p

for all u ∈ X with ‖u‖1,p > 1.
The imbedding X ↪→ Lα(x)(Ω) being compact, there is a constant k ≥ 0

such that

(16) ‖u‖α ≤ k ‖u‖1,p , u ∈ X.

If ‖u‖α > 1 and ‖u‖1,p > 1, then ϕα(u) ≤ ‖u‖α+
α and from (16) we have

(17) H(u) ≥ 1
p+

‖u‖p
1,p − akα+ ‖u‖α+

1,p − b ‖u‖1,p .

If ‖u‖α ≤ 1 and ‖u‖1,p > 1, then ϕα(u) ≤ ‖u‖α−
α and from (16) we have

(18) H(u) ≥ 1
p+

‖u‖p
1,p − akα− ‖u‖α−

1,p − b ‖u‖1,p .

The functions h1, h2 : (1,+∞) → R defined by

h1(t) =
1
p+

tp− − akα−tα− − bt,

h2(t) =
1
p+

tp− − akα+tα+ − bt

are continuous. Taking into account that α+ < p−, we have lim
t→∞

h1(t) =

lim
t→∞

h1(t) = +∞. Consequently, for any γ > 0 there exists δ > 0 such that

h1(t) > γ and h2(t) > γ for all t ∈ (1,+∞) with t > δ.
Choosing ρ = max {1, δ} + 1, it is obvious from (18) that H(u) > γ for

all u ∈ X with ‖u‖1,p = ρ. �

At this stage we are in a position to prove the main result of this section.

Theorem 4.2. Assume that hypotheses (1.1), (1.2), (1.3), (1.4), (1.5)
are satisfied . Then problem (P) has an unbounded sequence of weak solutions
(un)n∈N ⊆ X for which H(un) ≥ 0 for any n ∈ N, and lim

n→∞
H(un) = +∞.

Proof. The function f being odd in the second argument, the functional
H is even. It is obvious that H(0) = 0.

By Proposition 4.1, H satisfies the (PS) condition. Proposition 4.2 shows
that the set {u ∈ Y | H(u) > 0} is bounded in X whenever Y is a finite di-
mensional subspace of X. Now, it is obvious that there exists R > 0 such that
H(u) ≤ 0 for all u ∈ Y with ‖u‖1,p ≥ R.
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The space X is a reflexive separable infinite dimensional real Banach
space. A well-known result from the theory of Banach spaces ensures the exis-
tence of two subspaces V and W of X such that X = V ⊕W and dim V < ∞.

By Proposition 4.3, there are constants ρ, γ > 0 such that H |‖u‖1,p=ρ≥ γ.
So, H(u) ≥ γ for all u ∈ V with ‖u‖1,p = ρ. Applying Theorem 4.1, we
conclude that H has an unbounded sequence of positive critical values. The
proof is complete. �

5. EXISTENCE OF SOLUTIONS BY A TOPOLOGICAL METHOD

In this section we study the existence of weak solutions for problem (P)
giving up part of hypotheses from Section 4. As we have seen is Section 4,
problem (P), under assumptions (1.1)–(1.5), has an unbounded sequence of
weak solutions in X. We shall see that less hypotheses results in fewer weak
solutions. Moreover, we prove that in a special case problem (P) has a unique
weak solution in X. The main tool in this section in searching solutions for
problem (P) is a Fredholm-type result for a couple of nonlinear operators (see
Dinca [2]).

Theorem 5.1. Let X and Y be real Banach spaces and two nonlinear
operators T, S : X → Y such that

(i) T is bijective and T−1 is continuous;
(ii) S is compact.

Let λ 6= 0 be a real number such that
(iii) ‖(λT − S)(x)‖ → ∞ as ‖x‖ → ∞;
(iv) there is a constant R > 0 such that

‖(λT − S)(x)‖ > 0 if ‖x‖ ≥ R, dLS

(
I − T−1

(
1
λ

S

)
, B(0, R), 0

)
6= 0.

Then λT − S is surjective from X onto Y .

Before stating the main result of this section, we recall that u ∈ X is a
weak solution for problem (P) if and only if −∆p(x)u = Nfu in X∗.

Theorem 5.2. Suppose that the Carathéodory function f satisfies (1.3)
and (1.5). Then problem (P) has at least a weak solution in X.

Proof. In order to apply Theorem 5.1 we take X = W
1,p(x)
0 (Ω), Y = X∗,

T = −∆p(x) and S = Nf .
The real Banach space X being reflexive, every strongly continuous op-

erator U : X → Y is compact (see [5], Theorem 1.1). Previous considerations
show that the operator S is compact.
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On the other hand, by Proposition 3.1(i), the operator T is a homeomor-
phism, so T is bijective and T−1 is continuous.

By Proposition 2.1(b),

(19) ‖T (u)‖ ≥ ‖u‖p−−1
1,p

for all u ∈ X with ‖u‖1,p ≥ 1. Since

|〈S(u), v〉| ≤
∫

Ω

(
c |u|α(x)−1 |v|+ h(x) |v|

)
dx, u, v ∈ X,

using Holder inequality and the compact imbedding X ↪→ Lα(x)(Ω), we get

(20) ‖S(u)‖ ≤ c1

∥∥ |u(x)|α(x)−1
∥∥

β
+ c2, u ∈ X,

where c1, c2≥0 are two constants. Moreover, we can choose q∈ [α−−1, α+−1]
and c3 ≥ 0 such that

(21)
∥∥ |u(x)|α(x)−1

∥∥
β
≤ ‖u‖q

α ≤ c3 ‖u‖q
1,p , u ∈ X.

From (19), (20) and (21), we deduce that

(22) ‖(T − S)(u)‖ ≥ ‖T (u)‖ − ‖S(u)‖ ≥ ‖u‖p−−1
1,p − c1c3 ‖u‖α+−1

1,p − c2

for all u ∈ X with ‖u‖1,p ≥ 1. But

lim
t→∞

(
tp−−1 − c1c3t

α+−1 − c2

)
= +∞

and from (22) we conclude that ‖(T − S)(u)‖ → ∞ as ‖u‖1,p →∞. Moreover,
there exists r1 > 1 such that ‖(T − S)(u)‖ > 1 for all u ∈ X with ‖u‖1,p > r1.

Denote

A =
{
u ∈ X | u = tT−1 (S(u)) for some t ∈ [0, 1]

}
and let us prove that A is bounded in X. For u ∈ A\{0}, i.e., u = tT−1 (S(u))
with some t ∈ [0, 1], we have

(23)
∥∥∥T (u

t

)∥∥∥ = ‖S(u)‖ ≤ c1c3 ‖u‖q
1,p + c2.

There are two constants a, b > 0 such that

‖u‖p+−1
1,p ≤ a ‖u‖α−−1

1,p + b if ‖u‖1,p ∈ (0, t),

‖u‖p−−1
1,p ≤ a ‖u‖α−−1

1,p + b if ‖u‖1,p ∈ [t, 1],

‖u‖p−−1
1,p ≤ a ‖u‖α+−1

1,p + b if ‖u‖1,p ∈ (1,+∞).
Let h1, h2 : [0, 1] → R and h3 : (1,+∞) → R be defined by

h1(t)= tp+−1−atα−−1−b, h2(t)= tp−−1−atα−−1−b, h3(t)= tp−−1−atα+−1−b.

The sets {t ∈ [0, 1] | h1(t) ≤ 0} ⊆ R, {t ∈ [0, 1] | h2(t) ≤ 0} ⊆ R and
{t ∈ (1,+∞) | h3(t) ≤ 0} ⊆ R are bounded in R.
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It follows from (23) and previous inequalities that A is bounded in X.
Then there exists r2 > 0 such that A ⊆ B(0, r2). Choose R = max {r1, r2}
and consider the homotopy of compact transforms H1 : [0, 1] × B(0, R) → X
defined by H1(t, u) = tT−1(S(u)). It is obvious from the choice of R that,
H1(t, u) 6= u for any u ∈ ∂B(0, R). Consequently,

dLS (I −H1(0, ·), B(0, R), 0) = dLS (I −H1(1, ·), B(0, R), 0) ,

that is,

dLS

(
I − T−1(S), B(0, R), 0

)
= dLS (I,B(0, R), 0) = 1 6= 0.

The couple of nonlinear operators (T, S) satisfies the hypotheses of Theo-
rem 5.1 for λ = 1. We conclude that T −S : X → Y is surjective. Then there
exists u ∈ X such that T (u) = S(u) and the proof is complete. �

Corollary 5.1. Assume the hypotheses of Theorem 5.2, and assume
also that the function fx : R → R defined by fx(t) = f(x, t) is decreasing a.e.
x ∈ Ω. Then problem (P) has a unique weak solution in X.

Proof. It is enough to prove that T − S : X → Y is injective. Let
u1, u2 ∈ X such that (T − S) (u1) = (T − S) (u2). We have

〈T (u1)− T (u2), u1 − u2〉 = 〈S(u1)− S(u2), u1 − u2〉
and, since T is strictly monotone,

(24) 〈S(u1)− S(u2), u1 − u2〉 ≥ 0.

For a.e. x ∈ Ω we have (f(x, u1(x))− f(x, u2(x))) (u1(x)− u2(x)) ≤ 0. From
(24) we deduce that

(25) 〈S(u1)− S(u2), u1 − u2〉 = 0.

Proposition 3.1(ii), (24) and (25) show that u1 = u2.
The operator T − S : X → Y is bijective. Consequently, there exists a

unique u ∈ X such that T (u) = S(u). �

REFERENCES

[1] G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet
problems with p-laplacian. Port. Math. (N.S.) 58 (2001), 339–378.

[2] G. Dinca, A Fredholm-type result for a couple of nonlinear operators. C.R. Math. Acad.
Sci. Paris 333 (2001), 415–419.

[3] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and W m,p(x)(Ω). J. Math. Anal. Appl. 263
(2001), 424–446.

[4] X.L. Fan and Q.H. Zhang, Existence of solutions for p(x)-laplacian Dirichlet problem.
Nonlinear Anal. 52 (2003), 1843–1852.



56 Petre Sorin Iliaş 14
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