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We give a probabilistic interpretation of strong [∆]-ergodicity at time 0. Then we
define the breaking up of a weakly ∆-ergodic Markov chain at time 0 as being the
cardinal |∆| of ∆. For a strongly ∆-ergodic Markov chain at time 0 this notion is a
measure of the dependence on the initial state of the limit probability distribution;
clearly, it is useful for the design and analysis of some Markovian algorithms, such
as, the simulated annealing. Also we give a probabilistic interpretation of strong
ergodicity on a nonempty subset of state space at time 0. We show some theorems
on strong or uniform strong ergodicity on a nonempty subset of state space at
time 0 or at all times, some theorems on weak or strong ergodicity, and a theorem
on uniform weak ∆-ergodicity. Since the case Pn → P as n → ∞ is met with the
simulated annealing, some of these results refer to this case or, in particular, they
can be applied to it. We also make a connection with reliability theory (see [6]
and the references therein).
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1. PROBABILISTIC INTERPRETATION
OF STRONG [∆]-ERGODICITY AT TIME 0 AND BREAKING UP

In this section we give a probabilistic interpretation of strong [∆]-ergo-
dicity at time 0. Further, this probabilistic interpretation leads us to define
the breaking up of the state space of a weakly ∆-ergodic Markov chain at
time 0. The breaking up is useful, e.g., for the design and analysis of some
Markovian algorithms, such as, the simulated annealing.

In this paper, a vector x is a row vector and x′ denotes its transpose.
Consider a finite Markov chain (Xn)n≥1 with state space S ={1, 2, . . . , r},

initial distribution p0, and transition matrices (Pn)n≥1. Frequently, we shall
refer to it as the (finite) Markov chain (Pn)n≥1. For all integers m ≥ 0, n > m,
define

Pm,n = Pm+1Pm+2 . . . Pn = ((Pm,n)ij)i,j∈S .
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(The entries of a matrix Z will be denoted Zij .)
Set

Par(E) = {∆ | ∆ is a partition of E} ,

where E is a nonempty set. We shall agree that the partitions do not contain
the empty set, except for the case from Theorem 3.6 and that of bases from
Remark 3.16 (like in [7], [18], and [19]).

Definition 1.1. Let ∆1,∆2 ∈ Par(E). We say that ∆1 is finer than ∆2 if
∀V ∈ ∆1, ∃W ∈ ∆2 such that V ⊆ W.

Write ∆1 � ∆2 when ∆1 is finer than ∆2.
In ∆-ergodic theory the natural space is S × N, called state-time space.

Let ∅ �= A ⊆ S and ∅ �= B ⊆ N.

Definition 1.2 ([18]). Let i, j ∈ S. We say that i and j are in the same
weakly ergodic class on A × B if ∀ (k,m) ∈ A × B we have

lim
n→∞ [(Pm,n)ik − (Pm,n)jk] = 0.

Write i
A×B∼ j when i and j are in the same weakly ergodic class on

A × B. Then A×B∼ is an equivalence relation and determines a partition ∆ =
∆ (A × B) = (C1, C2, . . . , Cs) of S. The sets C1, C2, . . . , Cs are called weakly
ergodic classes on A × B.

Definition 1.3 ([18]). Let ∆ = (C1, C2, . . . , Cs) be the partition of weakly
ergodic classes on A × B of a Markov chain. We say that the chain is weakly
∆-ergodic on A × B. In particular, a weakly (S)-ergodic chain on A × B is
called weakly ergodic on A × B for short.

Definition 1.4 ([18]). Let (C1, C2, . . . , Cs) be the partition of weakly
ergodic classes on A×B of a Markov chain with state space S and ∆ ∈ Par (S) .
We say that the chain is weakly [∆]-ergodic on A×B if ∆ � (C1, C2, . . . , Cs) .

According to [18] (see also [10], [14], and [15]), in connection with the
above notions and notation we mention some special cases.

1. A × B = S ×N. In this case we write ∼ instead of S×N∼ and omit ‘on
S × N’ in Definitions 1.2, 1.3, and 1.4.

2. A = S. In this case we write B∼ instead of S×B∼ and replace ‘S ×B’ by
‘(time set) B’ in Definitions 1.2, 1.3, and 1.4. A special subcase is B = {m}
(m ≥ 0); in this situation we can write m∼ instead of

{m}∼ and can replace ‘on
(time set) {m}’ by ‘at time m’ in Definitions 1.2, 1.3, and 1.4.

3. B = N. In this case we set A∼ instead of A×N∼ and replace ‘A × N’ by
‘(state set) A’ in Definitions 1.2, 1.3, and 1.4.
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Definition 1.5 ([18]). Let C be a weakly ergodic class on A× B. We say
that C is a strongly ergodic class on A×B if ∀i ∈ C, ∀ (j,m) ∈ A×B the limit

lim
n→∞(Pm,n)ij := πm,j = πm,j (C)

exists and does not depend on i.

Definition 1.6 ([18]). Consider a weakly ∆-ergodic chain on A × B. We
say that the chain is strongly ∆-ergodic on A × B if any C ∈ ∆ is a strongly
ergodic class on A × B. In particular, a strongly (S)-ergodic chain on A × B
is called strongly ergodic on A × B for short.

Definition 1.7 ([18]). Consider a weakly [∆]-ergodic chain on A×B. We
say that the chain is strongly [∆]-ergodic on A × B if any C ∈ ∆ is included
in a strongly ergodic class on A × B.

Also, according to [18] (see also [9] and [11]), in connection with the
notions from Definitions 1.5, 1.6, and 1.7 we can simplify the language as in
the above cases 1, 2, and 3.

Let T = (Tij) be a real m × n matrix. Let ∅ �= U ⊆ {1, 2, . . . ,m} and
∅ �= V ⊆ {1, 2, . . . , n} . Define

TU = (Tij)i∈U, j∈{1,2,...,n} , T V = (Tij)i∈{1,2,...,m}, j∈V ,

T V
U = (Tij)i∈U, j∈V , α (T ) = min

1≤i,j≤m

n∑
k=1

min (Tik, Tjk)

(if T is a stochastic matrix, then α (T ) is called the ergodicity coefficient of
Dobrushin of T (see, e.g., [4, p. 56] or [5, p. 143])),

α (T ) =
1
2

max
1≤i,j≤m

n∑
k=1

|Tik − Tjk| ,

γ∆ (T ) = min
K∈∆

α (TK) , γ∆ (T ) = max
K∈∆

α (TK) ,

where ∆ ∈ Par ({1, 2, . . . ,m}) (see [14] for γ∆ and γ∆), and

|‖T‖|∞ = max
1≤i≤m

n∑
j=1

|Tij|

(the ∞-norm of T ).
Let

Rm,n = {P | P is a real m × n matrix} ,

Nm,n = {P | P is a nonnegative m × n matrix} ,

Sm,n = {P | P is a stochastic m × n matrix} ,

and for m = n := r

Rr = Rr,r, Nr = Nr,r, Sr = Sr,r.
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Definition 1.8 ([15]). Let ∆ ∈ Par ({1, 2, . . . ,m}). We say that a matrix
P ∈ Rm,n is [∆]-stable if PK is a stable matrix (i.e., a real matrix whose rows
are identical), ∀K ∈ ∆.

Definition 1.9 ([14]). Let ∆ ∈ Par ({1, 2, . . . ,m}). We say that a matrix
P ∈ Rm,n is ∆-stable if ∆ is the least fine partition for which P is a [∆]-stable
matrix. In particular, a ({1, 2, . . . ,m})-stable matrix is called stable for short.

Definition 1.10. Let ∅ �= K ⊆ S. Let p be a probability distribution on
S. We say that p is concentrated on K if pS−K = 0.

Theorem 1.11. Let (Xn)n≥1 be a strongly [∆]-ergodic Markov chain
at time 0 with state space S, initial distribution p0, and transition matrices
(Pn)n≥1. If ∃K ∈ ∆ such that p0 is concentrated on K and lim

n→∞P0,n := Π0,

then

(1.1) lim
n→∞P (Xn = j) = (Π0)ij := a0,K,j, ∀j ∈ S, ∀i ∈ K.

Proof. Since the chain is strongly [∆]-ergodic at time 0, Π0 is a [∆]-
stable (stochastic) matrix. Now, from the fact that p0 is concentrated on K
and P (Xn = j) = (p0P0,n)j , we obtain the conclusion by letting n → ∞. �

Theorem 1.11 (1.1) yields a probabilistic interpretation of strong [∆]-
ergodicity at time 0. We see that the limit distribution depend on K ∈ ∆
and does not depend on the initial distribution p0, if it is concentrated on
K. Therefore, all strongly [∆]-ergodic chains at time 0 with the same state
space S, initial distribution concentrated on the same set K ∈ ∆, and the
same transition matrices (Pn)n≥1 have the same limit distribution. This result
generalizes a well-known result for strong ergodicity (see, e.g., [4, p. 223] or
[5, p. 157]). Also, this result holds for any strongly [∆]-ergodic chain on (time
set) B with 0 ∈ B (because this implies that the chain is strongly [∆]-ergodic
at time 0) and for any strongly ∆-ergodic chain on B with 0 ∈ B (because this
implies that the chain is strongly [∆]-ergodic on B with 0 ∈ B). Moreover,
we remark that if a chain is strongly [∆]- or ∆-ergodic on B with 0 ∈ B,
then ∃∆′ ∈ Par (S) with ∆ � ∆′ such that the chain is strongly ∆′-ergodic at
time 0. Therefore, we can replace ‘[∆]-’ with ‘∆-’ in Theorem 1.11 (this is the
maximal case). As concerns some Markovian algorithms, such as, simulated
annealing, which are strongly [∆]- or ∆-ergodic at time 0 (Niemiro [8] asserts
that under some conditions simulated annealing is strongly ∆-ergodic at any
time m ≥ 0 (he used the term ‘convergent’, therefore he did not determine
∆)), we infer that it does not matter the starting point belonging to a given set
K ∈ ∆. This means that ∆ and |∆| give us information about the dependence
on the initial state of the asymptotic behaviour of the algorithm. Moreover,
for strongly ∆-ergodic Markov chains at time 0, the importance of ∆ and |∆| is
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supported, too, by the following basic fact. Consider the collection of strongly
∆-ergodic Markov chains at time 0 with the same state space S and the same
transition matrices (Pn)n≥1. For any K ∈ ∆, all chains of the collection with
the initial distribution concentrated on K have the same limit distribution, say
p(K). If a chain belonging to the considered collection has initial distribution
p0 and limit distribution π0, then

π0 =
∑
K∈∆

∑
i∈K

(p0)i p(K),

i.e., π0 is a convex combination of the p(K), K ∈ ∆. Accordingly, we define
the following notion in a more general context, namely, for weakly ∆-ergodic
Markov chains at time 0.

Definition 1.12. Consider a weakly ∆-ergodic Markov chains at time 0.
We say that the number b0 := |∆| is the breaking up of the state space S at
time 0 of the Markov chain. (In general, if a Markov chain is weakly ∆-ergodic
on A × B, then we say that the number bA×B := |∆| is the breaking up of A
on B of the Markov chain. In particular, if A × B = S × N, then we use b in
place of bS×N and say that b is the breaking up of the Markov chain for short.)

We can say that the breaking up (of the state space S at time 0) is a
measure of the dependence on the initial state of the limit probability dis-
tribution of a strongly ∆-ergodic Markov chain at time 0. This statement is
supported by the above considerations and the following result.

Proposition 1.13. We have
(i) ∆ � ∆′ implies |∆| ≥ |∆′| ;
(ii) b0 ≥ 1; b0 = 1 if and only if the chain is weakly ergodic at time 0;
(iii) b0 ≤ |S| = r; b0 = r if and only if the chain is weakly ({i})i∈S

ergodic at time 0.

Proof. Obvious. �
Remark 1.14. (a) Proposition 1.13 (i) can be used to obtain lower bounds

for breaking up (for b0 we cannot use Theorems 1.30, 1.31, 1.44, and 1.45 from
[20], but for b we can use them).

(b) b0 = 1 means that we do not have dependence on the initial state
(this is the best case); b0 = r means that we have maximum dependence on
the initial state (this is the worst case).

Let H : S → R be a function. We want to find min
y∈S

H (y) . A stochastic

optimization technique for solving this problem approximately when S is very
large is the simulated annealing (see, e.g., [8] and the references therein).
For this, consider a sequence (βn)n≥1 of positive real numbers with βn → ∞
as n → ∞ ((βn)n≥1 is called the cooling schedule), a irreducible stochastic
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matrix G = (Gij)i,j∈S (G is called the generation matrix ) and the Markov
chain (Xn)n≥1 with state space S and transition matrices (Pn)n≥1 , where

(Pn)ij =




Gije−βn(H(j)−H(i))+ if i �= j,

1 − ∑
k �=i

(Pn)ik if i = j,

∀i, j ∈ S. (Pn)n≥1 is the simulated annealing chain; it determines the simulated
annealing algorithm (this is the classical case).

We have

lim
n→∞(Pn)ij =




0 if i �= j, H(j) > H(i),

Gij if i �= j, H(j) ≤ H(i),

1 − ∑
k �=i,H(k)≤H(i)

Gik if i = j,

∀i, j ∈ S. Therefore, this chain belongs to the class of Markov chain (Pn)n≥1

with the property that there exists a (stochastic) matrix P such that Pn → P
as n → ∞. It follows that it is important to study the collection of Markov
chains (Pn)n≥1 for which Pn → P as n → ∞ (related to this see, e.g., [1], [4,
pp. 226–228], [5, p. 170 and pp. 176–178], [13], [16], [20], and, in this paper,
Theorem 2.7 (from Section 2) and Sections 3 and 4).

The breaking up for the simulated annealing is an open problem. This is a
hard problem, but for some examples it can be easy as shows the following case.

Example 1.15. Let H : {1, 2, 3, 4} → R, H(1) = H (4) = 4, H(2) =
H(3) = 2 and

G =




1
2

1
2 0 0

1
3

1
3

1
3 0

0 1
3

1
3

1
3

0 0 1
2

1
2




.

We have

Pn =




1
2

1
2 0 0

1
3e−2βn 1 − 1

3

(
1 + e−2βn

)
1
3 0

0 1
3 1 − 1

3

(
1 + e−2βn

)
1
3e−2βn

0 0 1
2

1
2




, ∀n ≥ 1,
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and

Pn →




1
2

1
2 0 0

0 2
3

1
3 0

0 1
3

2
3 0

0 0 1
2

1
2




:= P as n → ∞.

Since P is a mixing matrix (see Definition 4.7), the chain is strongly ergodic
(this is a theorem of J.L. Mott (see, e.g., [4, p. 226] or [22, p. 150]). Therefore,
b0 = 1,∀ (βn)n≥1 with βn → ∞ as n → ∞, i.e., as for breaking up, this is the
best case.

Now, we give an example for which the breaking up problem is not easy
even if the state space S is very small.

Example 1.16. Let H : {1, 2, 3, 4} → R, H(1) = 2, H(2) = H(3) = 4,
H(4) = 0 and

G =




1
2

1
2 0 0

0 1
2

1
2 0

0 1
3

1
3

1
3

1
3 0 1

3
1
3




(here G12 > 0 and G21 = 0). We have

Pn =




1 − 1
2e−2βn 1

2e−2βn 0 0

0 1
2

1
2 0

0 1
3

1
3

1
3

1
3e−2βn 0 1

3e−4βn 1 − 1
3

(
e−2βn + e−4βn

)




, ∀n ≥ 1,

and

Pn →




1 0 0 0

0 1
2

1
2 0

0 1
3

1
3

1
3

0 0 0 1




:= P as n → ∞.

Since P is a reducible matrix we cannot use the theorem of J.L. Mott. Some
open problems here:
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1) ∀ (βn)n≥1 with
∑
n≥1

e−2βn < ∞, do we have b0 ≥ 2? (Obviously, using

[1] or [20], we have b ≥ 2,∀ (βn)n≥1 with
∑
n≥1

e−2βn < ∞.)

2) ∃ (βn)n≥1 with
∑
n≥1

e−2βn < ∞ such that b0 = 2 (i.e., is the chain weakly

(or strongly) ({1} , {2, 3, 4})-ergodic at time 0)? (∃ (βn)n≥1 with
∑
n≥1

e−2βn <

∞ such that b = 2?)
From this section we infer that for the design and analysis of some Mar-

kovian algorithms (in particular the simulated annealing) we should have in
view breaking up, too; obviously, an algorithm with a breaking up as small as
possible is preferable.

2. PROBABILISTIC INTERPRETATION OF STRONG ERGODICITY
ON A NONEMPTY SUBSET OF STATE SPACE AT TIME 0

In this section we give a probabilistic interpretation of strong ergodicity
on a state set A, ∅ �= A ⊆ S, at time 0, i.e., on A × {0} (see Definition 1.6).
Also we prove some results related to strong ergodicity on A (see also [9] for
some results and examples).

In the next result we give a probabilistic interpretation of strong ergod-
icity on A × {0}. In particular, it holds for a strongly Markov chain on A.

Theorem 2.1. Let (Xn)n≥1 be a strongly ergodic Markov chain on A ×
{0} with state space S, initial distribution p0, and transition matrices (Pn)n≥1.

If lim
n→∞ (P0,n)A := Π0, then

lim
n→∞P (Xn = j) = (Π0)ij := a0,j, ∀j ∈ A, ∀i ∈ S.

(Since Π0 is an r × |A| matrix, we agree that (Π0)ij is the entry of Π0 in its
ith row and the column corresponding to state j.)

Proof. Since Π0 is a stable r × |A| matrix, we have

lim
n→∞P (Xn = j) = lim

n→∞ (p0P0,n)j = p0 lim
n→∞ (P0,n){j} =

= p0 (Π0)
{j} = (Π0)ij , ∀j ∈ A, ∀i ∈ S

((Π0)
{j} is the column of Π0 corresponding to state j), i.e., the conclusion. �
In Theorem 2.1 we obtained a formula for the limit distribution on A

of the chain; it also give us a probabilistic interpretation of strong ergodicity
on A × {0}.

We know that a strongly ergodic chain has a unique limit, i.e., ∃Π ∈ Sr

(moreover, Π is a stable matrix) such that lim
n→∞Pm,n = Π,∀m ≥ 0 (see, e.g.,
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[4, p. 223] or [5, p. 157]). In the next theorem we show that this result can be
generalized for strong ergodicity on any nonempty subset of the state space.

Theorem 2.2. Consider a Markov chain (Pn)n≥1. If it is strongly er-
godic on A at time m with limit Πm, ∀m ≥ 0, then there exists a stable
(substochastic) matrix Π such that Πm = Π, ∀m ≥ 0.

Proof. We show that Πm = Πm+1, ∀m ≥ 0. First, remark that if P is an
r × r stochastic matrix and Q is a stable real matrix, then PQ = Q. Next,

Πm = lim
n→∞(Pm,n)A = lim

n→∞Pm+1 (Pm+1,n)A =

= Pm+1 lim
n→∞ (Pm+1,n)A = Pm+1Πm+1 = Πm+1, ∀m ≥ 0.

Therefore, Πm = Π0 := Π, ∀m ≥ 0. �
A criterion for strong ergodicity on a nonempty subset of state space S

is the following result.

Theorem 2.3. Consider a Markov chain (Xn)n≥1 with state space S,

initial distribution p0, and transition matrices (Pn)n≥1.
(i) If ∃j ∈ S such that lim

n→∞(Pn){j} = 0, then

(i1) the chain is strongly ergodic on {j} with limit 0;
(i2) lim

n→∞P (Xn = j) = 0.

(ii) (A generalization of (i)) Let

A =
{

j | j ∈ S and lim
n→∞(Pn){j} = 0

}
.

If A �= ∅, then
(ii1) the chain is strongly ergodic on A with limit 0;
(ii2) lim

n→∞P (Xn = j)=0, ∀j∈A (therefore, lim
n→∞P (Xn∈A) = 0).

Proof. (i) (i2) follows from (i1) and Theorem 2.1. To prove (i1) let

vn = vn(j) = max
i∈S

(Pn)ij , ∀n ≥ 1.

Then
(Pm,n)ij =

∑
k∈S

(Pm,n−1)ik (Pn)kj ≤
∑
k∈S

(Pm,n−1)ik vn =

= vn

∑
k∈S

(Pm,n−1)ik = vn → 0 as n → ∞, ∀m ≥ 0, ∀i ∈ S,

i.e., the chain is strongly ergodic on {j} with limit 0 (see also Theorem 2.2).
(ii) It follows from (i) because a chain is strongly ergodic on A with limit

0 if and only if it is strongly ergodic on {j}, ∀j ∈ A, with limit 0. �
A first generalization of Theorem 2.3 is
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Theorem 2.4. Consider a Markov chain (Xn)n≥1 with state space S,

initial distribution p0, and transition matrices (Pn)n≥1. If there exist A, ∅ �=
A ⊆ S, and a stable matrix Π such that lim

n→∞(Pn)A = Π, then the chain is

strongly ergodic on A with limit Π and lim
n→∞P (Xn ∈ A) =

∑
j∈A

Πij , ∀i ∈ S.

Proof. The chain is strongly ergodic on A with limit Π if and only if it
is strongly ergodic on {j} with limit Π{j}, ∀j ∈ A (Π{j} is the column of Π
corresponding to state j). Let j ∈ A. Let

un = un(j) = min
i∈S

(Pn)ij and vn = vn(j) = max
i∈S

(Pn)ij , ∀n ≥ 1.

By hypothesis we have

lim
n→∞un = lim

n→∞ vn = Πij := aj , ∀i ∈ S

(Πij is the entry of Π in its ith row and the column corresponding to state j).
Using the proof of Theorem 2.3 it is easy to see that

un ≤ (Pm,n)ij ≤ vn, ∀m,n, 0 ≤ m < n, ∀i ∈ S.

Hence
lim

n→∞(Pm,n)ij = lim
n→∞un = lim

n→∞ vn = aj.

The last assertion is now obvious. �
A second generalization of Theorem 2.3 is

Theorem 2.5. Consider a Markov chain (Xn)n≥1 with state space S,

initial distribution p0, and transition matrices (Pn)n≥1. If ∃A, ∅ �= A ⊆ S,

such that lim sup
l→∞

lim sup
n→∞

(Pn−l,n)A = 0, then the chain is strongly ergodic on

A with limit 0 and lim
n→∞P (Xn ∈ A) = 0.

Proof. We first show that the chain is strongly ergodic on A with limit
0. Let j ∈ A. It follows from

(Pm,n)ij =
∑
k∈S

(Pm,n−l)ik (Pn−l,n)kj ≤

≤
∑
k∈S

(Pn−l,n)kj , ∀l,m, n, 0 ≤ m < n − l < n, ∀i ∈ S,

that

lim sup
n→∞

(Pm,n)ij ≤
∑
k∈S

lim sup
n→∞

(Pn−l,n)kj , ∀l ≥ 1, ∀m ≥ 0, ∀i ∈ S.

So that

lim sup
n→∞

(Pm,n)ij ≤
∑
k∈S

lim sup
l→∞

lim sup
n→∞

(Pn−l,n)kj = 0, ∀m ≥ 0, ∀i ∈ S.
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Therefore,
lim

n→∞(Pm,n)ij = 0, ∀m ≥ 0, ∀i ∈ S,

i.e., the chain is strongly ergodic on {j} with limit 0. Thus it is strongly
ergodic on A with limit 0. The second part follows from the first part and
Theorem 2.1. �

Theorem 2.5 has a related result which is in fact a generalization of
Theorem 1.35 from [20] (see also Theorem 2.27 from [18]). For this, we should
remember that a chain (Pn)n≥1 is limit strongly ergodic on A (∅ �= A ⊆ S) if
there exists a stable (substochastic) matrix Π such that

lim
m→∞ lim

n→∞ (Pm,n)A = Π

(see Definition 2.5 from [18]; the equivalence follows from ∃ lim
n→∞(Pm,n)A, ∀m ≥

m0 (m0 ≥ 0), because |S| < ∞ and, as in [18], we agree that when writing
lim

u→∞ lim
v→∞ au,v, where au,v ∈ R, ∀u, v ∈ N with u ≥ u1, v ≥ v1(u), we assume

that ∃u0 ≥ u1 such that ∃ lim
v→∞ au,v, ∀u ≥ u0).

Theorem 2.6. Consider a Markov chain (Pn)n≥1. Then the chain is
strongly ergodic on A with limit Π if and only if it is limit strongly ergodic on
A with limit Π.

Proof. “⇒” If the chain is strongly ergodic on A with limit Π, then
lim

n→∞ (Pm,n)A = Π, ∀m ≥ 0. It follows that lim
m→∞ lim

n→∞ (Pm,n)A = Π, i.e., the
chain is limit strongly ergodic on A with limit Π.

“⇐” If the chain is limit strongly ergodic on A with limit Π, then ∃m0 ≥ 0
such that ∃ lim

n→∞(Pm,n)A, ∀m ≥ m0, and

lim
m→∞ lim

n→∞ (Pm,n)A = Π.

Further, it follows that ∃ lim
n→∞(Pm,n)A, ∀m ≥ 0. Now, we show that

lim
n→∞(Pm,n)A = Π, ∀m ≥ 0. Setting Qm = lim

n→∞ (Pm,n)A, ∀m ≥ 0, we have

∣∣∥∥(Pm,n)A − Π
∥∥∣∣

∞ =
∣∣∥∥Pm,k(Pk,n)A − Pm,kΠ

∥∥∣∣
∞ ≤

≤ |‖Pm,k‖|∞
∣∣∥∥(Pk,n)A − Π

∥∥∣∣
∞ =

∣∣∥∥(Pk,n)A − Π
∥∥∣∣

∞ ≤
≤ ∣∣∥∥(Pk,n)A − Qk

∥∥∣∣
∞ + |‖Qk − Π‖|∞ , ∀k,m, n, 0 ≤ m < k < n,

which implies

lim sup
n→∞

∣∣∥∥(Pm,n)A − Π
∥∥∣∣

∞ ≤ |‖Qk − Π‖|∞ , ∀k,m, 0 ≤ m < k.
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Since lim
m→∞Qm = Π, we have

lim sup
n→∞

∣∣∥∥(Pm,n)A − Π
∥∥∣∣

∞ ≤ inf
k>m

|‖Qk − Π‖|∞ = 0, ∀m ≥ 0.

Therefore, lim
n→∞ (Pm,n)A = Π, ∀m ≥ 0, i.e., the chain is strongly ergodic on A

with limit Π. �
In the case Pn → P as n → ∞ with P having transient states (i.e., the

homogeneous Markov chain with transition matrix P has transient states) we
have more than Theorem 2.5. For this, we should remember that a Markov
chain is uniformly strongly ergodic on A with limit Π if lim

n→∞ (Pm,n)A = Π uni-

formly with respect to m ≥ 0 (see Definition 1.13 from [18] and Theorem 2.2).

Theorem 2.7. Consider a Markov chain (Pn)n≥1 with Pn → P as n →
∞. Let T be the set of transient states of P (P has one or more recurrent
classes). Suppose that T �= ∅. Then the chain is uniformly strongly ergodic on
T with limit 0.

Proof. It is known that (Pn)T → 0 as n → ∞ (see, e.g., [4, p. 91]). Let
ε > 0. It follows from |S| < ∞ that ∃n0 ≥ 1 such that (Pn0)ij < ε, ∀i ∈ S,
∀j ∈ T. Further, because |S| < ∞ and

lim
n→∞ (Pn,n+n0)

T = (Pn0)T ,

∃n1 ≥ 0 such that

(Pn,n+n0)ij < ε, ∀n ≥ n1, ∀i ∈ S, ∀j ∈ T.

From

(Pm,m+n+n1+n0)
T = Pm,m+n+n1 (Pm+n+n1,m+n+n1+n0)

T , ∀m,n ≥ 0,

we have
(Pm,m+n+n1+n0)ij < ε, ∀m,n ≥ 0, ∀i ∈ S, ∀j ∈ T,

since Pm,m+n+n1 is a stochastic matrix, ∀m,n ≥ 0. Therefore, the chain is
uniformly strongly ergodic on T with limit 0. �

To apply Theorem 2.7 to the simulated annealing chain (Pn)n≥1 (see
Section 1) we need to determine the set of transient states of P , where P =
lim

n→∞Pn. This is T =
{

i | i ∈ S and ∃p ≥ 2, ∃i1, i2, . . . , ip ∈ S such that i1 =

i, Gi1i2 , Gi2i3, . . . , Gip−1ip > 0, and H(i1)≥H(i2)≥ · · · ≥ H(ip−1)>H(ip)
}
∪{

i | i ∈ S and ∃j ∈ S, j �= i, for which ∃p ≥ 2, ∃i1, i2, . . . , ip ∈ S such that
i1 = i, ip = j, Gi1i2 , Gi2i3, . . . , Gip−1ip > 0, and H(i1) = H(i2) = · · · = H(ip)
and ∀q ≥ 2, ∀j1, j2, . . . , jq ∈ S such that j1 = j, jq = i, and H(j1) = H(j2) =
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· · · = H(jq), ∃u ∈ {1, 2, . . . , q − 1} with Gjuju+1 = 0
}

. Further, by Theo-
rem 2.7, the simulated annealing chain is uniformly strongly ergodic on T
with limit 0 and lim

n→∞P (Xn = j) = 0, ∀j ∈ T (see also Theorem 4.2 from [8]

which has something in common with this result). Setting R = S − T (R is
the set of recurrent states of P ), we note also that

(i) PC
C ≥ GC

C if C is a recurrent class;
(ii) if PR

R is irreducible and aperiodic (this happens if R is a recurrent
class and, e.g., GR

R is irreducible and aperiodic), then P is mixing (hence, using
a theorem of J.L. Mott (see, e.g., [4, p. 226] or [22, p. 150]), it follows that the
simulated annealing chain is strongly ergodic in this case (therefore, b0 = 1
for any cooling schedule (βn)n≥1)).

3. WEAK AND STRONG ERGODICITY

In this section we continue the study of special chains (Pn)n≥1 with
Pn → P as n → ∞. Here we give some weak or strong ergodicity results both
related to such chains and results which can be applied to some special cases.

The following theorem is a well-known result on weak ergodicity.

Theorem 3.1 (J. Hajnal). Consider a Markov chain (Pn)n≥1 . Then
it is weakly ergodic if and only if there exists a strictly increasing sequence
0 ≤ n1 < n2 < · · · of natural numbers such that

∑
s≥1

α
(
Pns,ns+1

)
= ∞.

Proof. See, e.g., [4, p. 219] or [5, p. 151]. �
Closely related to Theorem 3.1 is the following result.

Theorem 3.2. Consider a Markov chain (Pn)n≥1. Then it is weakly
ergodic if and only if there exist two strictly increasing sequences (ns)s≥1 and
(n′

s)s≥1 of natural numbers with 0 ≤ n′
1 < n1 ≤ n′

2 < n2 ≤ · · · such that∑
s≥1

α(Pn′
s,ns) = ∞.

Proof. “⇒” If the chain is weakly ergodic, then by Theorem 3.1 there
exists a strictly increasing sequence 0 ≤ m1 < m2 < · · · of natural numbers
such that

∑
s≥1

α(Pms ,ms+1) = ∞. Now, the conclusion follows with (ns)s≥1 :=

(ms)s≥2 and (n′
s)s≥1 := (ms)s≥1 .

“⇐” Using the well-known properties α (A) = 1 − α(A) and α (AB) ≤
α (A) α (B), where A,B ∈ Sr (see, e.g., [4, pp. 57–58] or [5, pp. 144–145]),
we have

α
(
Pns−1,ns

) ≥ α
(
Pn′

s,ns

)
, ∀s ≥ 2.
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This implies ∑
s≥1

α
(
Pns,ns+1

)
= ∞,

i.e., by Theorem 3.1, the chain is weakly ergodic. �
Remark 3.3. (a) Theorem 3.1 was generalized for [∆]-groupable Markov

chains in [15]. The same thing can be made for Theorem 3.2 using γ∆ in place
of α.

(b) The application of Theorems 3.1 and 3.2 can fail in some cases, e.g.,
in the case when they require only unbounded sequences of the block lengths
(the length of a block Pm,n is n−m; for other things about blocks see [16] and
[20]). An example where they can be applied and the sequences of the block
lengths can be taken unbounded is

Pn =



(

1
2

1
2

1
2

1
2

)
if ∃k ≥ 0 such that n = 2k,

I2 if n �= 2k, ∀k ≥ 0.

We can apply Theorems 3.1 and 3.2, e.g., with Pns,ns+1 = P2s,2s+1 and Pn′
s,ns =

P2s−1,2s , respectively, ∀s ≥ 1. Also, Theorems 3.1 and 3.2 can be applied here
with all blocks of length 1.

Proposition 3.4. Let (an)n≥1 be a sequence of nonnegative real numbers
and k ≥ 1. If

∑
n≥1

an = ∞, then there exists a strictly increasing sequence

1 ≤ n1 < n2 < · · · of natural numbers with ns+1 − ns = k, ∀s ≥ 1, such that∑
s≥1

ans = ∞. Moreover, ∃u ∈ {0, 1, . . . , k − 1} such that
∑
n≥1

akn+u = ∞.

Proof. Case 1. k = 1. Obvious.
Case 2. k ≥ 2. Suppose that for any strictly increasing sequence 1 ≤

n1 < n2 < · · · of natural numbers with ns+1 − ns = k, ∀s ≥ 1, we have∑
s≥1

ans < ∞. Then

∑
n≥1

akn < ∞,
∑
n≥1

akn+1 < ∞, . . . ,
∑
n≥1

akn+(k−1) < ∞,

so that
∑
n≥1

an < ∞. Contradiction. The last part is now obvious. �

Remark 3.5. It follows from Proposition 3.4 that
∑
s≥1

ans = ∞ still holds

if ns+1 − ns ≥ k, ∀s ≥ 1.
Clearly, we also need simple results on weak ergodicity obtained directly

from entries of matrices without using the ergodicity coefficients as in Theo-
rems 3.1 and 3.2. An example is the following result.
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Theorem 3.6. Consider a Markov chain (Pn)n≥1 and ∆ = (K1,K2, . . . ,
Kp,Kp+1) ∈ Par (S) , where Kp+1 �= ∅ or Kp+1 = ∅ (Kp+1 is the set of tran-

sient states of P below). Let K =
p⋃

u=1
Ku. If

(i) Pn → P as n → ∞;
(ii) PKu

Ku
is an irreducible and aperiodic stochastic matrix, ∀u∈{1, 2, . . . , p}

(therefore, PKv
Ku

= 0, ∀u ∈ {1, 2, . . . , p} , ∀v ∈ {1, 2, . . . , p + 1} with u �= v (if
Kp+1 = ∅, then we set P ∅

Ku
= 0, ∀u ∈ {1, 2, . . . , p}));

(iii) ∃v ∈ {1, 2, . . . , p + 1} , ∃j ∈ Kv, ∃i1 ∈ Ku1 , ∃i2 ∈ Ku2 , . . . , ∃iw ∈
Kuw such that ∑

n≥1

min
i∈{i1,i2,...,iw}

(Pn)ij = ∞,

where w is the smallest number with the property K − Kv =
w⋃

t=1
Kut ,

then the chain is weakly ergodic.

Proof. By (i), we have lim
n→∞Pn,n+k = P k, ∀k ≥ 1. Further, by (ii),

∃k0 ≥ 1, ∃n′
0 ≥ 1 such that

(Pn,n+k0)
Ku

Ku
> 0, ∀n ≥ n′

0, ∀u ∈ {1, 2, . . . , p} .

It follows that ∃a′ > 0 such that

(Pn,n+k0)gh > a′, ∀n ≥ n′
0, ∀g, h ∈ Ku, ∀u ∈ {1, 2, . . . , p} .

By (i), (ii), and |S| < ∞, ∃a′′ > 0, ∃n′′
0 ≥ 1 such that ∀u ∈ {1, 2, . . . , p},

∀h ∈ Ku, ∃g ∈ Ku such that

(Pn)gh ≥ a′′, ∀n ≥ n′′
0.

Let l ≥ 0, a = min (a′, a′′) , and n0 = max (n′
0, n

′′
0) . By (iii) and Proposi-

tion 3.4, there exists a strictly increasing sequence 1 ≤ n1 < n2 < · · · of
natural numbers with ns+1 − ns = l + k0 + 1, ∀s ≥ 1, such that∑

n≥1

min
i∈{i1,i2,...,iw}

(Pns)ij = ∞

Let ans = min
i∈{i1,i2,...,iw}

(Pns)ij, ∀s ≥ 1. Let s ≥ 1. If ns + l ≥ n0, then the

matrix (
Pns+l,ns+1−1Pns+1

){j}
K

has all entries greater or equal to min
(
a2, aans+1

)
for j ∈ Kv, where v ∈

{1, 2, . . . , p}, and it has all entries greater or equal to aans+1 for j ∈ Kp+1,

when Kp+1 �= ∅ (therefore in both cases
(
Pns+l,ns+1

)
K

is a Markov matrix
(see, e.g., [4, p. 57] or [22, p. 140]), if ans+1 > 0).
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Case 1. Kp+1 = ∅. It follows that P does not have transient states. By
the above considerations we have

α
(
Pns+l,ns+1

) ≥ amin
(
a, ans+1

)
, ∀s ≥ 1, ns + l ≥ n0,

so that ∑
s≥1,ns+l≥n0

α
(
Pns+l,ns+1

) ≥ a
∑

s≥1,ns+l≥n0

min
(
a, ans+1

)
= ∞

because a is a constant, a > 0, and∑
s≥1

ans = ∞

(we use the cases:
1) |{s |s ≥ 1, ns + l ≥ n0, and min (a, ans) = a}| < ∞;
2) |{s |s ≥ 1, ns + l ≥ n0, and min (a, ans) = a}| = ℵ0).

Now, by Theorem 3.2 (or Theorem 3.1, if we take l = 0), it follows that the
chain is weakly ergodic.

Case 2. Kp+1 �= ∅. Now, P have transient states. Let 0 < ε < 1
|Kp+1| .

Let ε′ = |Kp+1| ε. By Theorem 2.7, ∃m0 ≥ 1 such that

(Pm,m+m0)gh < ε, ∀m ≥ 0, ∀g ∈ S, ∀h ∈ Kp+1.

This implies that∑
h∈K

(Pm,m+m0)gh > 1 − ε′, ∀m ≥ 0, ∀g ∈ S.

First, suppose that j ∈ Kv , where v ∈ {1, 2, . . . , p} . Take l = m0. Be-
cause

(
Pns+l,ns+1

){j}
K

has all entries greater or equal to min
(
a2, aans+1

)
for

ns + l ≥ n0, it follows that
(
Pns,ns+1

){j} has all entries greater or equal to
(1 − ε′)min

(
a2, aans+1

)
for ns + l ≥ n0. Therefore,

α
(
Pns,ns+1

) ≥ (1 − ε′
)
amin

(
a, ans+1

)
, ∀s ≥ 1, ns + l ≥ n0.

So that, by Theorem 3.1, the chain is weakly ergodic. The subcase j ∈ Kp+1

is similar. �
Problem 3.7. Under the assumptions of Theorem 3.6 is the chain even

strongly ergodic? (For the simulated annealing if the weak ergodicity is
proved, then under some conditions the strong ergodicity follows by a result
of R.W. Madsen and D.L. Isaacson (see Theorem V.4.3 in [5, p. 160]).)
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Example 3.8. Let

Pn =




1 − 1
2n 0 0 1

4n 0 1
4n

1
2

1
2 0 0 0 0

1
4n 0 3

4 − 1
2n

1
4

1
4n 0

0 0 1
4

3
4 0 0

0 0 0 1
2n

1
2

1
2 − 1

2n

0 1
4n

1
4n 0 1

4
3
4 − 1

2n




, ∀n ≥ 1.

This chain satisfies the assumptions of Theorem 3.6 with j = 4, i1 = 1, and
i2 = 5, therefore it is weakly ergodic.

Remark 3.9. Behind the reasoning from the proof of Theorem 3.6 there
are some types of matrices. Take (in the case Kp+1 = ∅), e.g.,

A =




× × 0 0
× × 0 0
0 0 × ×
0 0 × ×


 and B =




× × 0 ×
× × 0 0
0 0 × 0
0 0 × ×


 ,

where × stands for nonzero entries. We have

AB =




× × 0 ×
× × 0 ×
0 0 × ×
0 0 × ×


 .

Note that A is a diagonal [({1, 2} , {3, 4})]-simple matrix (see [20]) with A
{1,2}
{1,2} >

0 and A
{3,4}
{3,4} > 0, B is a Sarymsakov matrix, but it is not an almost scrambling

matrix (see, e.g., [2, pp. 64−69], [3], [21], and [22, p. 146]), and the product
AB is a Markov matrix (see, e.g., [4, p. 57] or [22, p. 140]).

In particular, the notions and results from general ∆-ergodic theory can
be used to obtain results on weak or strong ergodicity (see also Section 2 and
[18]). An example in this section is Theorem 3.6. Another one is the following
theorem which, in particular, can be used in the case Pn → P as n → ∞ with
P having one or more recurrent classes and transient states.
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Theorem 3.10. Let

Pn =

(
Qn 0

Rn Tn

)
, ∀n ≥ 1,

be a Markov chain and (K1,K2) ∈ Par (S) , where (Pn)K1
K1

= Qn, ∀n ≥ 1. If
(i) K1 is included in a weakly (respectively, strongly) ergodic class;
(ii) (Pn)n≥1 is weakly ergodic on K2 (equivalently,

∏
n≥t

Tn = 0, ∀t ≥ 1),

then (Pn)n≥1 is weakly (respectively, strongly) ergodic.

Proof. First, we suppose that K1 is included in a weakly ergodic class.
By (ii), (Pn)n≥1 is strongly ergodic on K2 with limit 0. Further, it follows from
|S| < ∞ and

(Pm,n)K2 → 0 as n → ∞, ∀m ≥ 0,

that ∀ε, 0 < ε < 1, ∀m ≥ 0, ∀i ∈ S, ∃nm,ε > m such that∑
j∈K1

(Pm,n)ij ≥ 1 − ε, ∀n ≥ nm,ε.

Since |K1| < ∞ and K1 is included in a weakly ergodic class and (Pn)K2
K1

= 0,
∀n ≥ 1, it follows that ∃a > 0 with property that ∀m ≥ 0, ∃nm > m such that
∀n ≥ nm, ∃jm,n ∈ K1 for which

(Qm,n)ijm,n
≥ a, ∀i ∈ K1

(obviously, we use also the fact that a stochastic u × u matrix has in every
row at least one entry greater or equal to 1

u).
Let m ≥ 0 and 0 < ε < 1. Then the matrix

Pm,nm,εPnm,ε,nnm,ε

has a column with all entries greater or equal to (1 − ε) a (therefore, it is a
Markov matrix (see, e.g., [4, p. 57] or [22, p. 140]). So that

α
(
Pm,nm,εPnm,ε,nnm,ε

)
≥ (1 − ε) a.

Hence we can apply Theorem 3.1. Therefore, the chain (Pn)n≥1 is weakly
ergodic.

Second, we suppose that K1 is included in a strongly ergodic class. It
follows that it is included in a weakly ergodic class. Hence, using the first
part, (Pn)n≥1 is weakly ergodic. Now, the chain (Pn)n≥1 being weakly ergodic
and K1 being included in a strongly ergodic class, it follows that (Pn)n≥1 is
strongly ergodic (see Theorem 2.1 in [13]). �
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Remark 3.11. The special case Tn = 0, ∀n ≥ 1, of the above theorem
can be given another proof. For this, consider the ergodicity coefficient (see
[17] (correctly, here, X = {1, 2, . . . ,m}2))

ζ (A,B) =
1
2

max
i,j∈{1,2,...,m}

n∑
k=1

|aik − bjk| ,

where A and B are two nonnegative m × n matrices. Further,

Pm,n =

(
Qm,n 0

Rm+1Qm+1,n 0

)
, ∀m,n, 0 ≤ m < n.

Using the inequality

ζ (AC,BC) ≤ζ (A,B) α (C) , ∀A,B ∈ Sp,q, ∀C ∈ Sq,r,

from [17], we have

ζ (Qm,n, Rm+1Qm+1,n) ≤ζ (Qm+1, Rm+1) α (Qm+1,n) ≤
≤α (Qm+1,n) → 0 as n → ∞, ∀m ≥ 0,

because K1 is included in a weakly ergodic class. Therefore, (Pn)n≥1 is weakly
(respectively, strongly) ergodic.

A special case of Theorem 3.10 (which, in particular, can be also applied
in the case Pn → P as n → ∞) is the following result.

Theorem 3.12. Let

Pn =

(
Qn 0

Rn Tn

)
, ∀n ≥ 1,

be a Markov chain and (K1,K2) ∈ Par (S) , where (Pn)K1
K1

= Qn, ∀n ≥ 1. If
(i) K1 is included in a weakly (respectively, strongly) ergodic class;
(ii) Tn is lower triangular, ∀n ≥ 1, or it is upper triangular, ∀n ≥ 1;
(iii)

∏
n≥t

(Pn)ii = 0, ∀t ≥ 1, ∀i ∈ K2,

then (Pn)n≥1 is weakly (respectively, strongly) ergodic.

Proof. It is sufficient to prove that (Pn)n≥1 is strongly ergodic on K2

since, by Theorem 3.10, we obtain weak (respectively, strong) ergodicity. Ob-
viously,

lim
n→∞(Pm,n)K2

K1
= 0, ∀m ≥ 0.

It remains to prove that

lim
n→∞(Pm,n)K2

K2
= 0, ∀m ≥ 0.
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Let m ≥ 0. Then for m1,m2, . . . ,mu ≥ 1, where u = |K2| , setting qt =
m + m1 + · · · + mt, ∀t ∈ {1, 2, . . . , u} , we have

(Pm,qu)K2

K2
=(Pm,q1Pq1,q2 . . . Pqu−1,qu)K2

K2
=(Pm,q1)

K2
K2

(Pq1,q2)
K2
K2

. . . (Pqu−1,qu)K2
K2

.

Further, by (ii) and (iii), the matrices

lim sup
m1→∞

(Pm,q1)
K2

K2
, lim sup

m2→∞
(Pq1,q2)

K2

K2
, . . . , lim sup

mu→∞

(
Pqu−1,qu

)K2

K2

are strictly lower triangular, if Tn is lower triangular, ∀n ≥ 1, or they are
strictly upper triangular, if Tn is upper triangular, ∀n ≥ 1. It follows that

lim sup
m1→∞

lim sup
m2→∞

. . . lim sup
mu→∞

(Pm,qu)K2

K2
= 0.

This yields
lim

n→∞(Pm,n)K2
K2

= 0. �

Remark 3.13. Clearly, (ii) and (iii) from Theorem 3.12 imply that ∃i ∈
K2, ∃j ∈ K1 such that

∑
n≥1

(Pn)ij = ∞.

Remark 3.14. As to reliability theory we mention that all chains from [6]

verify (i) from Theorem 3.12 with K1 = {r} (here Pn =
(

Tn Rn

0 Qn

)
, ∀n ≥ 1)

in the ‘strongly’ case. Moreover, the chain given by (2.2) from [6] also verifies
(ii); if (iii) also holds, then it is strongly ergodic.

Remark 3.15. Theorem 3.10 or Theorem 3.12 can be used for each
Markov chain (P ′

n)n≥1 whose perturbation of the first type is (Pn)n≥1 there,
i.e.,

∑
n≥1

|‖Pn − P ′
n‖|∞ < ∞ (see [1] or [20]). E.g., if

P ′
n =




1 − 1
n2 0 1

n2

1
4n2 1 − 1

2n − 1
4n2

1
2n

1
2n 0 1 − 1

2n


 , ∀n ≥ 1,

then we can apply Theorem 3.12 to the chain

Pn =




1 0 0

0 1 − 1
2n

1
2n

1
2n 0 1 − 1

2n


 , ∀n ≥ 1.

Further, since, by Theorem 3.12, (Pn)n≥1 is strongly ergodic, it follows that
(P ′

n)n≥1 is strongly ergodic (see [1] or [20]). Moreover, they have the same
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limit (see [1] or [20]), namely, 
 1 0 0

1 0 0
1 0 0


 .

Remark 3.16. Theorems 2.7 and 3.12 can be also used to determine T
from a basis (K1,K2, . . . ,Kp, T ) of a strongly ∆-ergodic Markov chain or,
more generally, of a tail indempotent (see [7], [18], and [19]).

Exercise 3.17. Let

Pn =




1 − 1
n 0 1

n
1
n 1 − 1

n 0

0 0 1


 , ∀n ≥ 1.

Prove that the chain is weakly ergodic (weak ergodicity and {3} included in a
strongly ergodic class imply strong ergodicity) using:

(i) Theorem 3.1 (of J. Hajnal);
(ii) Theorem 3.12.

Then compare the sizes of the computations.

4. UNIFORM WEAK ∆-ERGODICITY

In this section we give some results on uniform weak [∆]- or ∆- ergodicity
for a chain (Pn)n≥1 with Pn → P as n → ∞.

Definition 4.1 ([12]). Let i, j ∈ S. We say that i and j are in the same
uniformly weakly ergodic class if ∀k ∈ S we have

lim
n→∞

[
(Pm,m+n)ik − (Pm,m+n)jk

]
= 0

uniformly with respect to m ≥ 0.
Write i

u∼ j when i and j are in the same uniformly weakly ergodic class.
Then u∼ is an equivalence relation and determines a partition (U1, U2, . . . , Ut)
of S. The sets U1, U2, . . . , Ut are called uniformly weakly ergodic classes.

Definition 4.2 ([14]). Let ∆ = (U1, U2, . . . , Ut) be the partition of uni-
formly weakly ergodic classes of a Markov chain. We say that the chain is
uniformly weakly ∆-ergodic. In particular, a uniformly weakly (S)-ergodic
chain is called uniformly weakly ergodic for short.

Definition 4.3 ([15]). Let (U1, U2, . . . , Ut) be the partition of uniformly
weakly ergodic classes of a Markov chain with state space S and ∆ ∈ Par (S) .
We say that the chain is uniformly weakly [∆]-ergodic if ∆ � (U1, U2, . . . , Ut) .
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Definition 4.4 ([14]). Let A ∈ Nm and ∆ ∈ Par ({1, 2, . . . ,m}). We say
that A is a [∆]-scrambling matrix if γ∆ (A) > 0.

Definition 4.5. Let A ∈ Nm and ∆ ∈ Par ({1, 2, . . . ,m}). We say that
A is a ∆-scrambling matrix if ∆ is the least fine partition for which A is
a [∆]-scrambling matrix. In particular, an (S)-scrambling matrix is called
scrambling for short.

Definition 4.6 ([14]). Let A ∈ Nm and ∆ ∈ Par ({1, 2, . . . ,m}). We say
that A is a [∆]-mixing matrix if ∃n ≥ 1 such that γ∆ (An) > 0.

Definition 4.7. Let A ∈ Nm and ∆ ∈ Par ({1, 2, . . . ,m}). We say that A
is a ∆-mixing matrix if ∆ is the least fine partition for which A is a [∆]-mixing
matrix. In particular, an (S)-mixing matrix is called mixing for short.

Definition 4.8. Let A ∈ Nm,n. We say that A is a generalized stochastic
matrix if ∃a ≥ 0, ∃B ∈ Sm,n such that A = aB.

Let

G∆ =
{
P | P ∈ Sr and ∀K,L ∈ ∆, PL

K is a generalized stochastic matrix
}

,

where ∆ ∈ Par (S) .

Definition 4.9 ([15]). We say that a Markov chain (Pn)n≥1 is [∆]-groupable
if Pn ∈ G∆,∀n ≥ 1.

A uniform weak [∆]-ergodicity result in the case Pn → P as n → ∞ is
as follows.

Theorem 4.10 ([15]). Consider a [∆]-groupable (finite) Markov chain
(Pn)n≥1 such that lim

n→∞Pn = P. Then the chain is uniformly weakly [∆]-

ergodic if and only if P is a [∆]-mixing matrix. More generally, this equiva-
lence still holds if ∃k ≥ 1 such that lim

n→∞Pn,n+k = P.

Proof. See [15]. �
As to uniform weak ∆-ergodicity in the case Pn → P as n → ∞ is the

following result.

Theorem 4.11 ([15]). Consider a [∆]-groupable Markov chain (Pn)n≥1

such that lim
n→∞Pn = P and |∆| ≤ 2. Then the chain is uniformly weakly ∆-

ergodic if and only if P is a ∆-mixing matrix. More generally, this equivalence
still holds if ∃k ≥ 1 such that lim

n→∞Pn,n+k = P and |∆| ≤ 2.

Proof. See [15]. �
The condition |∆| ≤ 2 from Theorem 4.11 can be removed for one of the

implications. This is showed in the following result.
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Theorem 4.12. Consider a [∆]-groupable Markov chain (Pn)n≥1 such
that lim

n→∞Pn = P. If P is a ∆-mixing matrix, then the chain is uniformly
weakly ∆-ergodic. More generally, this implication still holds if ∃k ≥ 1 such
that lim

n→∞Pn,n+k = P.

Proof. Let k ≥ 1 such that lim
n→∞Pn,n+k = P . To prove that the chain

(Pn)n≥1 is uniformly weakly ∆-ergodic we use the following result. If we have
a [∆]-groupable Markov chain (Pn)n≥1 and ∆ is the least fine partition for
which ∃a > 0, ∃u0 ≥ 1 such that

γ∆ (Pm,m+u0) ≥ a, ∀m ≥ 0,

then the chain is uniformly weakly ∆-ergodic (see [15] or [19]).
Let ∆′ be the least fine partition for which ∃a > 0, ∃u0 ≥ 1 such that

γ∆′ (Pm,m+u0) ≥ a, ∀m ≥ 0.

We show that ∆′ = ∆. Note that if Q ∈ Sr is a ∆1-mixing matrix and
γ∆2 (Qn) > 0, then ∆2 � ∆1, where ∆1,∆2 ∈ Par (S). Further, the conti-
nuity of γ∆′ , lim

m→∞Pm,m+nk = Pn, ∀n ≥ 1, and P is a ∆-mixing matrix (see

Definition 4.7) implies that

a ≤ lim sup
m→∞

γ∆′ (Pm,m+u0) ≤ lim sup
m→∞

γ∆′ (Pm,m+nk) =

= lim
m→∞ γ∆′ (Pm,m+nk) = γ∆′ (Pn) , ∀n ≥ 1, nk ≥ u0

(we also used the inequality γ∆′ (Pm,m+nk) ≥ γ∆′ (Pm,m+u0) ; this follows from
γ∆ (AB) ≤γ∆ (A) α (B) , α (A) ≤ 1, and γ∆ (A) = 1 − γ∆(A), ∀A,B ∈ Sr,
∀∆ ∈ Par (S) (see [14])). Therefore, ∆′ � ∆. If we prove that ∃a > 0, ∃u0 ≥ 1
such that

γ∆ (Pm,m+u0) ≥ a, ∀m ≥ 0,
then ∆′ = ∆. Since P is a ∆-mixing matrix, ∃n0 ≥ 1 such that γ∆ (Pn0) > 0.
Then

lim
m→∞ γ∆ (Pm,m+n0k) = γ∆ (Pn0) > 0.

Hence ∃a > 0, ∃m0 ≥ 0 such that

γ∆ (Pm,m+n0k) ≥ a, ∀m ≥ m0.

Since γ∆ (A) = 1−γ∆(A), ∀A ∈ Sr, and γ∆ (AB) ≤γ∆ (A) γ∆ (B), ∀A ∈ G∆,
∀B ∈ Sr, where ∆ ∈ Par (S) (see [15]), we obtain

γ∆ (Pm,m+m0+n0k) ≤γ∆ (Pm,m+m0) γ∆ (Pm+m0,m+m0+n0k) ≤
≤γ∆ (Pm+m0,m+m0+n0k) ≤ 1 − a, ∀m ≥ 0.

This yields
γ∆ (Pm,m+m0+n0k) ≥ a, ∀m ≥ 0,
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i.e., ∃a > 0, ∃u0 ≥ 1 (e.g., u0 = m0 + n0k) such that

γ∆ (Pm,m+u0) ≥ a, ∀m ≥ 0.

Therefore, ∆′ = ∆. It follows that the chain (Pn)n≥1 is uniformly weakly
∆-ergodic. �

Remark 4.13. The statement ‘the chain (Pn)n≥1 is uniformly weakly ∆-
ergodic if and only if P is a ∆-mixing matrix’ is false. Indeed, let (as in [19])

Pn = P =




1 0 0

0 1 0
1
2

1
2 0


 , ∀n ≥ 1.

This chain is uniformly weakly
( {1} , {2} , {3} )-ergodic, but P is not an

({1} , {2} , {3})-mixing matrix (moreover, here �∆ ∈ Par ({1, 2, 3}) such that
P is a ∆-mixing matrix).

REFERENCES

[1] I. Fleischer and A. Joffe, Behaviour of infinite products with applications to non-homo-
geneous Markov chains. In: H. Cohn (Ed.), Doeblin and Modern Probability, pp. 179–
187, Contemporary Mathematics 149. Amer. Math. Soc., Providence, RI, 1993.

[2] D.J. Hartfiel, Nonhomogeneous Matrix Products. World Scientific, River Edge, 2002.
[3] D.J. Hartfiel and E. Seneta, A note on semigroups of regular stochastic matrices. Linear

Algebra Appl. 141 (1990), 47–51.
[4] M. Iosifescu, Finite Markov Processes and Their Applications. Wiley, Chichester &
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[17] U. Păun, Ergodicity coefficients of several matrices. Math. Reports 7(57) (2005),
125–148.
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